Mapping quantitative trait loci controlling heading date in rice

Author(s):  
K. Fujino ◽  
T. Sato ◽  
H. Kiuchi ◽  
H. Kikuchi ◽  
Y. Nonoue ◽  
...  
2006 ◽  
Vol 56 (4) ◽  
pp. 341-349 ◽  
Author(s):  
Le-Hung Linh ◽  
Feng-Xue Jin ◽  
Kyung-Ho Kang ◽  
Young-Tae Lee ◽  
Soo-Jin Kwon ◽  
...  

Euphytica ◽  
2014 ◽  
Vol 197 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Seonghee Lee ◽  
Melisa H. Jia ◽  
Yulin Jia ◽  
Guangjie Liu

2019 ◽  
Vol 157 (1) ◽  
pp. 20-30
Author(s):  
C. H. Zhao ◽  
H. Sun ◽  
C. Liu ◽  
G. M. Yang ◽  
X. J. Liu ◽  
...  

AbstractHeading date (HD) and flowering date (FD) are critical for yield potential and stability, so understanding their genetic foundation is of great significance in wheat breeding. Three related recombinant inbred line populations with a common female parent were developed to identify quantitative trait loci (QTL) for HD and FD in four environments. In total, 25 putative additive QTL and 20 pairwise epistatic effect QTL were detected in four environments. The additive QTL were distributed across 17 wheat chromosomes. Of these, QHd-1A, QHd-1D, QHd-2B, QHd-3B, QHd-4A, QHd-4B and QHd-6D were major and stable QTL for HD. QFd-1A, QFd-2B, QFd-4A and QFd-4B were major and stable QTL for FD. In addition, an epistatic interaction test showed that epistasis played important roles in controlling wheat HD and FD. Genetic relationships between HD/FD and five yield-related traits (YRTs) were characterized and ten QTL clusters (C1–C10) simultaneously controlling YRTs and HD/FD were identified. The present work laid a genetic foundation for improving yield potential in wheat molecular breeding programmes.


2011 ◽  
Vol 101 (10) ◽  
pp. 1209-1216 ◽  
Author(s):  
P. Risser ◽  
E. Ebmeyer ◽  
V. Korzun ◽  
L. Hartl ◽  
T. Miedaner

Septoria tritici blotch (STB) is one of the most important leaf spot diseases in wheat worldwide. The goal of this study was to detect chromosomal regions for adult-plant resistance in large winter wheat populations to STB. Inoculation by two isolates with virulence to Stb6 and Stb15, both present in the parents, was performed and STB severity was visually scored plotwise as percent coverage of flag leaves with pycnidia-bearing lesions. ‘Florett’/‘Biscay’ and ‘Tuareg’/‘Biscay’, each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 316 and 269 F7:8 recombinant inbred lines, respectively, were phenotyped across four and five environments and mapped with amplified fragment length polymorphism, diversity array technology, and simple sequence repeat markers covering polymorphic regions of ≈1,340 centimorgans. Phenotypic data revealed significant (P < 0.01) genotypic differentiation for STB, heading date, and plant height. Entry-mean heritabilities (h2) for STB were 0.73 for ‘Florett’/‘Biscay’ and 0.38 for ‘Tuareg’/‘Biscay’. All correlations between STB and heading date as well as between STB and plant height were low (r = –0.13 to –0.20). In quantitative trait loci (QTL) analysis, nine and six QTL were found for STB ratings explaining, together, 55 and 51% of phenotypic variation in ‘Florett’/‘Biscay’ and ‘Tuareg’/‘Biscay’, respectively. Genotype–environment and QTL–environment interactions had a large impact. Two major QTL were detected consistently across environments on chromosomes 3B and 6D from ‘Florett’ and chromosomes 4B and 6B from ‘Tuareg’, each explaining 12 to 17% of normalized adjusted phenotypic variance. These results indicate that adult-plant resistance to STB in both mapping populations was of a quantitative nature.


Genome ◽  
2012 ◽  
Vol 55 (5) ◽  
pp. 360-369 ◽  
Author(s):  
Wengang Xie ◽  
Joseph G. Robins ◽  
B. Shaun Bushman

Orchardgrass ( Dactylis glomerata L.), or cocksfoot, is indigenous to Eurasia and northern Africa, but has been naturalized on nearly every continent and is one of the top perennial forage grasses grown worldwide. To improve the understanding of genetic architecture of orchardgrass and provide a template for heading date candidate gene search in this species, the goals of the present study were to construct a tetraploid orchardgrass genetic linkage map and identify quantitative trait loci associated with heading date. A combination of SSR markers derived from an orchardgrass EST library and AFLP markers were used to genotype an F1 population of 284 individuals derived from a very late heading Dactylis glomerata subsp. himalayensis parent and an early to mid-heading Dactylis glomerata subsp. aschersoniana parent. Two parental maps were constructed with 28 cosegregation groups and seven consensus linkage groups each, and homologous linkage groups were tied together by 38 bridging markers. Linkage group lengths varied from 98 to 187 cM, with an average distance between markers of 5.5 cM. All but two mapped SSR markers had homologies to physically mapped rice (Oryza sativa L.) genes, and six of the seven orchardgrass linkage groups were assigned based on this putative synteny with rice. Quantitative trait loci were detected for heading date on linkage groups 2, 5, and 6 in both parental maps, explaining between 12% and 24% of the variation.


2003 ◽  
Vol 53 (1) ◽  
pp. 51-59 ◽  
Author(s):  
Hongxuan Lin ◽  
Zheng-Wei Liang ◽  
Takuji Sasaki ◽  
Masahiro Yano

2008 ◽  
Vol 34 (11) ◽  
pp. 1869-1876
Author(s):  
Yong-Sheng ZHANG ◽  
Ling JIANG ◽  
Xi LIU ◽  
Liang-Ming CHEN ◽  
Shi-Jia LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document