Application research of neural networks based on map-reduce on cloud computing clusters

Author(s):  
Hai-Jun Zhang ◽  
Qi-Min Zhu ◽  
Nan-Feng Xiao
2011 ◽  
Vol 71-78 ◽  
pp. 4501-4505
Author(s):  
Ming Chen ◽  
Wan Zhou

Although modern bridge are carefully designed and well constructed, damage may occur in them due to unexpected causes. Currently, many different techniques have been proposed and investigated in bridge condition assessment. However, evaluation efficiency of condition assessment has not been paid much attention by the researchers. A fast evaluation of the urban railway bridge condition based on the cloud computing is presented. In this paper dynamic FE model and Artificial neural networks technique is applied to model updating. The cloud computing model provides the basis for fast analyses. It was found that when applied to the actually railway bridges, the proposed method provided results similar to those obtained by experts, but can improve efficiency of bridge


2021 ◽  
Vol 11 (7) ◽  
pp. 2925
Author(s):  
Edgar Cortés Gallardo Medina ◽  
Victor Miguel Velazquez Espitia ◽  
Daniela Chípuli Silva ◽  
Sebastián Fernández Ruiz de las Cuevas ◽  
Marco Palacios Hirata ◽  
...  

Autonomous vehicles are increasingly becoming a necessary trend towards building the smart cities of the future. Numerous proposals have been presented in recent years to tackle particular aspects of the working pipeline towards creating a functional end-to-end system, such as object detection, tracking, path planning, sentiment or intent detection, amongst others. Nevertheless, few efforts have been made to systematically compile all of these systems into a single proposal that also considers the real challenges these systems will have on the road, such as real-time computation, hardware capabilities, etc. This paper reviews the latest techniques towards creating our own end-to-end autonomous vehicle system, considering the state-of-the-art methods on object detection, and the possible incorporation of distributed systems and parallelization to deploy these methods. Our findings show that while techniques such as convolutional neural networks, recurrent neural networks, and long short-term memory can effectively handle the initial detection and path planning tasks, more efforts are required to implement cloud computing to reduce the computational time that these methods demand. Additionally, we have mapped different strategies to handle the parallelization task, both within and between the networks.


2018 ◽  
Vol 11 (4) ◽  
pp. 137-154 ◽  
Author(s):  
Lei Li ◽  
Min Feng ◽  
Lianwen Jin ◽  
Shenjin Chen ◽  
Lihong Ma ◽  
...  

Online services are now commonly deployed via cloud computing based on Infrastructure as a Service (IaaS) to Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS). However, workload is not constant over time, so guaranteeing the quality of service (QoS) and resource cost-effectiveness, which is determined by on-demand workload resource requirements, is a challenging issue. In this article, the authors propose a neural network-based-method termed domain knowledge embedding regularization neural networks (DKRNN) for large-scale workload prediction. Based on analyzing the statistical properties of a real large-scale workload, domain knowledge, which provides extended information about workload changes, is embedded into artificial neural networks (ANN) for linear regression to improve prediction accuracy. Furthermore, the regularization with noisy is combined to improve the generalization ability of artificial neural networks. The experiments demonstrate that the model can achieve more accuracy of workload prediction, provide more adaptive resource for higher resource cost effectiveness and have less impact on the QoS.


2010 ◽  
Vol 4 (2) ◽  
pp. 36-48 ◽  
Author(s):  
Kevin Hamlen ◽  
Murat Kantarcioglu ◽  
Latifur Khan ◽  
Bhavani Thuraisingham

In this paper, the authors discuss security issues for cloud computing and present a layered framework for secure clouds and then focus on two of the layers, i.e., the storage layer and the data layer. In particular, the authors discuss a scheme for secure third party publications of documents in a cloud. Next, the paper will converse secure federated query processing with map Reduce and Hadoop, and discuss the use of secure co-processors for cloud computing. Finally, the authors discuss XACML implementation for Hadoop and discuss their beliefs that building trusted applications from untrusted components will be a major aspect of secure cloud computing.


Sign in / Sign up

Export Citation Format

Share Document