Linear and Nonlinear Responses and Universality of Critical Exponents in Hamiltonian Systems with Long-Range Interaction

Author(s):  
Shun Ogawa ◽  
Yoshiyuki Y. Yamaguchi
Author(s):  
S.V. Belim

Critical behaviour of a range of ferromagnetic materials deviates from the predictions of the Ising, XY and Heisenberg models. Additional long-range forces competing with regular exchange interaction may explain this deviation. These competing interactions lead to new universality classes of critical behaviour. The paper uses the field theory approach to investigate critical behaviour in those systems in which long-range and short-range forces compete. We consider the case when a power function of distance r-D-σ, when 1.5 < σ < 2.0, can describe the long-range forces. There exists a distinctive critical behaviour mode for these values. We derived vertex functions using a two-loop approximation directly in three-dimensional space (D = 3) and, for all values, obtained a linear approximation of asymptotic series in terms of long-range interaction parameters. We applied the Pade --- Borel summation technique to these asymptotic series. We computed stable fixed points and critical exponents as functions of long-range interaction parameters for low relativeefficiency of the long-range interaction. We investigated how critical exponents depend on the factor in the power law and relative long-range interaction intensity. We compared our results to the critical exponent values found experimentally for manganites. We used the experimental critical exponent γ values to compute long-range interaction parameters and then used the long-range interaction parameters to derive the ß exponent values, which we then compared to the experimental values. We show good agreement between our theoretical results and experimental data.


2002 ◽  
Vol 718 ◽  
Author(s):  
Jian Yu ◽  
X. J. Meng ◽  
J.L. Sun ◽  
G.S. Wang ◽  
J.H. Chu

AbstractIn this paper, size-induced ferroelectricit yweakening, phase transformation, and anomalous lattice expansion are observed in nanocrystalline BaTiO3 (nc-BaTiO3) deriv ed b y low temperature hydrothermal methods, and they are w ellunderstood using the terms of the long-range interaction and its cooperative phenomena altered by particle size in covalen t ionic nanocrystals. In cubic nc-BaTiO3, five modes centerd at 186, 254, 308, 512 and 716 cm-1 are observed Raman active in cubic nanophase, and they are attributed to local rhombohedral distortion breaking inversion-symmetry in cubic nanophase. The254 and 308 cm-1 modes are significantly affected not only by the concentration of hydroxyl defects, but also their particular configuration. And the 806 cm-1 modes found to be closely associated with OH - absorbed on grain boundaries.


Mathematics ◽  
2021 ◽  
Vol 9 (14) ◽  
pp. 1624
Author(s):  
Leonid Litinskii ◽  
Boris Kryzhanovsky

In the present paper, we examine Ising systems on d-dimensional hypercube lattices and solve an inverse problem where we have to determine interaction constants of an Ising connection matrix when we know a spectrum of its eigenvalues. In addition, we define restrictions allowing a random number sequence to be a connection matrix spectrum. We use the previously obtained analytical expressions for the eigenvalues of Ising connection matrices accounting for an arbitrary long-range interaction and supposing periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document