microcanonical ensemble
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 12)

H-INDEX

24
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Juan F. Pedraza ◽  
Andrew Svesko ◽  
Watse Sybesma ◽  
Manus R. Visser

Abstract Quantum extremal surfaces (QES), codimension-2 spacelike regions which extremize the generalized entropy of a gravity-matter system, play a key role in the study of the black hole information problem. The thermodynamics of QESs, however, has been largely unexplored, as a proper interpretation requires a detailed understanding of backreaction due to quantum fields. We investigate this problem in semi-classical Jackiw-Teitelboim (JT) gravity, where the spacetime is the eternal two-dimensional Anti-de Sitter (AdS2) black hole, Hawking radiation is described by a conformal field theory with central charge c, and backreaction effects may be analyzed exactly. We show the Wald entropy of the semi-classical JT theory entirely encapsulates the generalized entropy — including time-dependent von Neumann entropy contributions — whose extremization leads to a QES lying just outside of the black hole horizon. Consequently, the QES defines a Rindler wedge nested inside the enveloping black hole. We use covariant phase space techniques on a time-reflection symmetric slice to derive a Smarr relation and first law of nested Rindler wedge thermodynamics, regularized using local counterterms, and intrinsically including semi-classical effects. Moreover, in the microcanonical ensemble the semi-classical first law implies the generalized entropy of the QES is stationary at fixed energy. Thus, the thermodynamics of the nested Rindler wedge is equivalent to the thermodynamics of the QES in the microcanonical ensemble.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Juan Maldacena ◽  
Alexey Milekhin

Abstract We study the real time formation of the ground state of two coupled SYK models. This is a highly entangled state which is close to the thermofield double state and can be viewed as a wormhole. We start from a high temperature state, we let it cool by coupling to a cold bath. We numerically solve for the large N dynamics. Our main result is that the system forms a wormhole by going through a region with negative specific heat, taking time that is independent of N. The dynamics is smooth everywhere and it seems to follow the equilibrium thermodynamic configurations of the microcanonical ensemble. Also we comment on the relation between this coupled SYK model and Jackiw-Teitelboim gravity theory with bulk fields.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Wu-zhong Guo

Abstract The reduced density matrix of a given subsystem, denoted by ρA, contains the information on subregion duality in a holographic theory. We may extract the information by using the spectrum (eigenvalue) of the matrix, called entanglement spectrum in this paper. We evaluate the density of eigenstates, one-point and two-point correlation functions in the microcanonical ensemble state ρA,m associated with an eigenvalue λ for some examples, including a single interval and two intervals in vacuum state of 2D CFTs. We find there exists a microcanonical ensemble state with λ0 which can be seen as an approximate state of ρA. The parameter λ0 is obtained in the two examples. For a general geometric state, the approximate microcanonical ensemble state also exists. The parameter λ0 is associated with the entanglement entropy of A and Rényi entropy in the limit n → ∞. As an application of the above conclusion we reform the equality case of the Araki-Lieb inequality of the entanglement entropies of two intervals in vacuum state of 2D CFTs as conditions of Holevo information. We show the constraints on the eigenstates. Finally, we point out some unsolved problems and their significance on understanding the geometric states.


2021 ◽  
pp. 71-94
Author(s):  
Marc Baus ◽  
Carlos F. Tejero

2021 ◽  
pp. 27-43
Author(s):  
Michele Campisi

2020 ◽  
Vol 34 (35) ◽  
pp. 2050410
Author(s):  
Ji-Xuan Hou

Weakly interacting Bose gases confined in a one-dimensional harmonic trap are studied using microcanonical ensemble approaches. Combining number theory methods, I present a new approach to calculate the particle number counting statistics of the ground state occupation. The results show that the repulsive interatomic interactions increase the ground state fraction and suppresses the fluctuation of ground state at low temperature.


Sign in / Sign up

Export Citation Format

Share Document