90. NUMERICAL SIMULATION FOR VERTICAL SROTING OF GRADED PARTCICLES IN SHEETFLOW BY TWO-PHASE TURBURENT FLOW MODEL

Author(s):  
Eiji Harada ◽  
Hitoshi Gotoh
2011 ◽  
Vol 189-193 ◽  
pp. 2181-2184
Author(s):  
Heng Zhang ◽  
Xiao Ming Qian ◽  
Zhi Min Lu ◽  
Yuan Bai

The functions of hydroentangled nonwovens are determined by the degree of the fiber entanglement, which depend mainly on parameters of the water jet. According to the spun lacing technology, this paper set up the numerical model based on the simplified water jetting model, establishing the governing equations, and the blended two-phase flow as the multiphase flow model. This paper simulation the water needle after the water jetting from the water needle plate in the different pressure (100bar, 60bar, 45bar, 35bar).


2004 ◽  
Vol 28 (11) ◽  
pp. 983-1005 ◽  
Author(s):  
Phung Dang Hieu ◽  
Tanimoto Katsutoshi ◽  
Vu Thanh Ca

Author(s):  
Hua Shen ◽  
Gang Wang ◽  
Kaixin Liu ◽  
Deliang Zhang

AbstractIn this paper, an Eulerian–Lagrangian two-phase flow model for liquid-fueled detonations is constructed. The gaseous mixture is described by an Eulerian method, and liquid particles in gaseous mixture are traced by a Lagrangian method. An improved space-time conservation element and solution element (CE/SE) scheme is applied to the simulations of detonations in liquid C


2013 ◽  
Vol 805-806 ◽  
pp. 1785-1789
Author(s):  
Chang Bin Wang ◽  
Miao Wang ◽  
Xiao Xu Li ◽  
Yu Liu ◽  
Jie Nan Dong

A three dimensional fluid flow model was set up in this paper, based on the computational fluid dynamics (CFD) and the elasticity theory. Using the finite volume method, a 120° bend was taken as a research object to simulate the erosion to the wall of fluid with sparse particles, finally, to determine the most severe wear areas.At the same time, the distribution of two-phase flows pressure and velocity was analyzed in 45° and 90° bends, then tracked the trajectory of the particles. The results show that the 90°bend has the smallest wear area and particle distribution or combination property is the best.


Author(s):  
Hua Shen ◽  
Gang Wang ◽  
Kaixin Liu ◽  
Deliang Zhang

AbstractIn this paper, an Eulerian–Lagrangian two-phase flow model for liquid-fueled detonations is constructed. The gaseous mixture is described by an Eulerian method, and liquid particles in gaseous mixture are traced by a Lagrangian method. An improved space-time conservation element and solution element (CE/SE) scheme is applied to the simulations of detonations in liquid C


Sign in / Sign up

Export Citation Format

Share Document