Selection of Oenococcus oeni as starter cultures to induce malolactic fermentation in Nebbiolo wine

Author(s):  
Antonella Costantini ◽  
Francesca Doria ◽  
Enrico Vaudano ◽  
Maria Carla Cravero ◽  
Emilia Garcia-Moruno
Author(s):  
Nair Temis Olguin ◽  
Lucrecia Delfederico ◽  
Liliana Semorile

Some phenolic acids can either inhibit or stimulate the growth of Oenococcus oeni and other lactic acid bacteria (LAB) in wine. It has been observed that some LAB metabolism could have an influence on wine colour. In this article, some of the relationships between LAB, malolactic fermentation (MLF) and phenolic compounds are summarised; these relationships are important for the selection of LAB to make starter cultures and are of interest for wineries in terms of its effect on wine colour.


2013 ◽  
Vol 29 (9) ◽  
pp. 1537-1549 ◽  
Author(s):  
Bárbara Mercedes Bravo-Ferrada ◽  
Axel Hollmann ◽  
Lucrecia Delfederico ◽  
Danay Valdés La Hens ◽  
Adriana Caballero ◽  
...  

Beverages ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. 23 ◽  
Author(s):  
Sibylle Krieger-Weber ◽  
José María Heras ◽  
Carlos Suarez

Malolactic fermentation (MLF) in wine is an important step in the vinification of most red and some white wines, as stands for the biological conversion of l-malic acid into l-lactic acid and carbon dioxide, resulting in a decrease in wine acidity. MLF not only results in a biological deacidification, it can exert a significant impact on the organoleptic qualities of wine. This paper reviews the biodiversity of lactic acid bacteria (LAB) in wine, their origin, and the limiting conditions encountered in wine, which allow only the most adapted species and strains to survive and induce malolactic fermentation. Of all the species of wine LAB, Oenococcus oeni is probably the best adapted to overcome the harsh environmental wine conditions and therefore represents the majority of commercial MLF starter cultures. Wine pH is most challenging, but, as a result of global warming, Lactobacillus sp. is more often reported to predominate and be responsible for spontaneous malolactic fermentation. Some Lactobacillus plantarum strains can tolerate the high alcohol and SO2 levels normally encountered in wine. This paper shows the potential within this species for the application as a starter culture for induction of MLF in juice or wine. Due to its complex metabolism, a range of compositional changes can be induced, which may positively affect the quality of the final product. An example of a recent isolate has shown most interesting results, not only for its capacity to induce MLF after direct inoculation, but also for its positive contribution to the wine quality. Degrading hexose sugars by the homo-fermentative pathway, which poses no risk of acetic acid production from the sugars, is an interesting alternative to control MLF in high pH wines. Within this species, we can expect more strains with interesting enological properties.


2014 ◽  
Vol 240 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Nan Li ◽  
Jinting Duan ◽  
Dawei Gao ◽  
Jianhua Luo ◽  
Ruiyu Zheng ◽  
...  

Author(s):  
Aitor Balmaseda ◽  
Alba Martín-García ◽  
Miguel Ángel Leal ◽  
Nicolas Rozès ◽  
Albert Bordons ◽  
...  

Recent research in non-Saccharomyces yeasts promotes their use as starter cultures in wine alcoholic fermentation together with S. cerevisiae. The use of these non-conventional yeasts can modulate the organoleptic profile of wines. However, it is unclear how they will modulate wines together with Oenococcus oeni after malolactic fermentation. In this article we discuss the main oenological consequences of these interactions and how malolactic fermentation can be stimulated using some of these non-Saccharomyces yeasts.


Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 31
Author(s):  
Răzvan Vasile Filimon ◽  
Claudiu-Ioan Bunea ◽  
Ancuța Nechita ◽  
Florin Dumitru Bora ◽  
Simona Isabela Dunca ◽  
...  

Malolactic fermentation (MLF) or biological decrease of wine acidity is defined as the enzymatic bioconversion of malic acid in lactic acid, a process performed by lactic acid bacteria (LAB). The procedures for the isolation of new indigenous LAB strains from the red wines produced in Copou Iasi wine center (NE of Romania) undergoing spontaneous malolactic fermentation, resulted in the obtaining of 67 catalase-negative and Gram-positive LAB strains. After testing in the malolactic fermentative process, application of specific screening procedures and identification (API 50 CH), two bacterial strains belonging to the species Oenococcus oeni (strain 13-7) and Lactobacillus plantarum (strain R1-1) with high yield of malolactic bioconversion, non-producing biogenic amines, and with active extracellular enzymes related to wine aroma, were retained and characterized. Tested in synthetic medium (MRS-TJ) for 10 days, the new isolated LAB strains metabolized over 98% of the malic acid at ethanol concentrations between 10 and 14 % (v/v), low pH (>3.0), total SO2 doses up to 70 mg/L and temperatures between 15 and 35 °C, showing high potential for future use in the winemaking process as bacterial starter cultures, in order to obtain high quality wines with increased typicity.


Fermentation ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 15
Author(s):  
Shao-Yang Wang ◽  
Hai-Zhen Zhu ◽  
Yi-Bin Lan ◽  
Ruo-Jin Liu ◽  
Ya-Ran Liu ◽  
...  

Malolactic fermentation is a vital red wine-making process to enhance the sensory quality. The objective of this study is to elucidate the starter cultures’ role in modifying phenolic compounds, biogenic amines, and volatile compounds after red wine malolactic fermentation. We initiated the malolactic fermentation in Cabernet Gernishct wine by using two Oenococcus oeni and two Lactobacillus plantarum strains. Results showed that after malolactic fermentation, wines experienced a content decrease of total flavanols and total flavonols, accompanied by the accumulation of phenolic acids. The Lactobacillus plantarum strains, compared to Oenococcus oeni, exhibited a prevention against the accumulation of biogenic amines. The malolactic fermentation increased the total esters and modified the aromatic features compared to the unfermented wine. The Lactobacillus plantarum strains retained more aromas than the Oenococcus oeni strains did. Principal component analysis revealed that different strains could distinctly alter the wine characteristics being investigated in this study. These indicated that Lactobacillus plantarum could serve as a better alternative starter for conducting red wine malolactic fermentation.


2016 ◽  
Vol 66 (3) ◽  
pp. 1285-1292
Author(s):  
Panxue Wang ◽  
Aixia Li ◽  
Huiye Sun ◽  
Mei Dong ◽  
Xinyuan Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document