scholarly journals BOSE-EINSTEIN CONDENSATE DARK MATTER MODEL TESTED BY GALACTIC ROTATION CURVES

Author(s):  
MAREK DWORNIK ◽  
ZOLTÁN KERESZTES ◽  
LÁSZLÓ Á. GERGELY
2020 ◽  
Vol 80 (8) ◽  
Author(s):  
Maria Crăciun ◽  
Tiberiu Harko

Abstract The nature of one of the fundamental components of the Universe, dark matter, is still unknown. One interesting possibility is that dark matter could exist in the form of a self-interacting Bose–Einstein Condensate (BEC). The fundamental properties of dark matter in this model are determined by two parameters only, the mass and the scattering length of the particle. In the present study we investigate the properties of the galactic rotation curves in the BEC dark matter model, with quadratic self-interaction, by using 173 galaxies from the recently published Spitzer Photomery & Accurate Rotation Curves (SPARC) data. We fit the theoretical predictions of the rotation curves in the slowly rotating BEC models with the SPARC data by using genetic algorithms. We provide an extensive set of figures of the rotation curves, and we obtain estimates of the relevant astrophysical parameters of the BEC dark matter halos (central density, angular velocity and static radius). The density profiles of the dark matter distribution are also obtained. It turns out that the BEC model gives a good description of the SPARC data. The presence of the condensate dark matter could also provide a solution for the core–cusp problem.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
M. Dwornik ◽  
Z. Keresztes ◽  
E. Kun ◽  
L. Á. Gergely

We present a comparative confrontation of both the Bose-Einstein Condensate (BEC) and the Navarro-Frenk-White (NFW) dark halo models with galactic rotation curves. We employ 6 High Surface Brightness (HSB), 6 Low Surface Brightness (LSB), and 7 dwarf galaxies with rotation curves falling into two classes. In the first class rotational velocities increase with radius over the observed range. The BEC and NFW models give comparable fits for HSB and LSB galaxies of this type, while for dwarf galaxies the fit is significantly better with the BEC model. In the second class the rotational velocity of HSB and LSB galaxies exhibits long flat plateaus, resulting in better fit with the NFW model for HSB galaxies and comparable fits for LSB galaxies. We conclude that due to its central density cusp avoidance the BEC model fits better dwarf galaxy dark matter distribution. Nevertheless it suffers from sharp cutoff in larger galaxies, where the NFW model performs better. The investigated galaxy sample obeys the Tully-Fisher relation, including the particular characteristics exhibited by dwarf galaxies. In both models the fitting enforces a relation between dark matter parameters: the characteristic density and the corresponding characteristic distance scale with an inverse power.


2015 ◽  
Vol 2015 (11) ◽  
pp. 027-027 ◽  
Author(s):  
Tiberiu Harko ◽  
Pengxiang Liang ◽  
Shi-Dong Liang ◽  
Gabriela Mocanu

Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 359
Author(s):  
Alexandre M. Gavrilik ◽  
Andriy V. Nazarenko

In this paper, we further elaborate on the Bose–Einstein condensate (BEC) dark matter model extended in our previous work [Phys. Rev. D 2020, 102, 083510] by the inclusion of sixth-order (or three-particle) repulsive self-interaction term. Herein, our goal is to complete the picture through adding to the model the fourth-order repulsive self-interaction. The results of our analysis confirm the following: while in the previous work the two-phase structure and the possibility of first-order phase transition was established, here we demonstrate that with the two self-interactions involved, the nontrivial phase structure of the enriched model remains intact. For this to hold, we study the conditions which the parameters of the model, including the interaction parameters, should satisfy. As a by-product and in order to provide some illustration, we obtain the rotation curves and the (bipartite) entanglement entropy for the case of a particular dwarf galaxy.


2016 ◽  
Vol 41 ◽  
pp. 1660133 ◽  
Author(s):  
Maxim A. Makukov ◽  
Eduard G. Mychelkin ◽  
Vladimir L. Saveliev

We revive the historically first neutrino dark matter model, but with an additional assumption that neutrinos might exist in tachyonic almost sterile states. To this end we propose a group-theoretical algorithm for the description of tachyons. The key point is that we employ a distinct tachyon Lorentz group with another (superluminal) parametrization which does not require traditional introduction of imaginary masses and negative energies, and therefore does not lead to violation of causality and unitarity. Our dark matter model represents effectively scalar tachyonic neutrino-antineutrino conglomerate. Distributed all over the universe, such fluid behaves as stable isothermal/stiff medium which produces somewhat denser regions (‘smoothed halos’) around galaxies and clusters. It is shown to be consistent with observational effects (galactic rotation curves).


2019 ◽  
Vol 64 (11) ◽  
pp. 1042 ◽  
Author(s):  
A. M. Gavrilik ◽  
I. I. Kachurik ◽  
M. V. Khelashvili

We elaborate further the м-deformation-based approach to the modeling of dark matter, in addition to the earlier proposed use of м-deformed thermodynamics. Herein, we construct м-deformed analogs of the Lane–Emden equation (for density profiles) and find their solutions. Using these, we plot the rotation curves for a number of galaxies. Different curves describing the chosen galaxies are labeled by respective (different) values of the deformation parameter м. As a result, the use of м-deformation leads to the improved agreement with observational data. For all the considered galaxies, the obtained rotation curves (labeled by м) agree better with data, as compared to the well-known Bose–Einstein condensate model results of T. Harko. Besides, for five of the eight cases of galaxies, we find a better picture for rotation curves, than the corresponding Navarro–Frenk–White (NFW) curves. The possible physical meaning of the parameter м basic for this version of м-deformation is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document