THE DYNAMIC ANALYSIS OF BELT CONVEYOR DRIVING DRUM BASED ON FINITE ELEMENT MODEL

Author(s):  
Wen-Qiang Zhang ◽  
Guang-Fu Bin ◽  
Xue-Jun Li ◽  
Qing-Kai Han
2013 ◽  
Vol 364 ◽  
pp. 42-45
Author(s):  
Yong Yan Wang ◽  
Xiao Liang Liu ◽  
Wen Bin Wei ◽  
Nan Qin

Simulation of simplified the part structures of vibration screen by ANSYS software, and then establishes the finite element model of the linear vibration screen. Modal analysis and harmonic analysis of finite element model, and then according to the analysis results corresponding local structural modifications and adjust the center of mass of the modified vibration screen. Last verified the rationality of structure optimization.


2013 ◽  
Vol 540 ◽  
pp. 79-86
Author(s):  
De Jun Wang ◽  
Yang Liu

Finite element (FE) model updating of structures using vibration test data has received considerable attentions in recent years due to its crucial role in fields ranging from establishing a reality-consistent structural model for dynamic analysis and control, to providing baseline model for damage identification in structural health monitoring. Model updating is to correct the analytical finite element model using test data to produce a refined one that better predict the dynamic behavior of structure. However, for real complex structures, conventional updating methods is difficult to be utilized to update the FE model of structures due to the heavy computational burden for the dynamic analysis. Meta-model is an effective surrogate model for dynamic analysis of large-scale structures. An updating method based on the combination between meta-model and component mode synthesis (CMS) is proposed to improve the efficiency of model updating of large-scale structures. The effectiveness of the proposed method is then validated by updating a scaled suspender arch bridge model using the simulated data.


2011 ◽  
Vol 221 ◽  
pp. 472-477
Author(s):  
Zhi Min Fan ◽  
Guang Ting Zhou ◽  
Jian Ping Liu

The finite element model of the stirring kneader shaft was built by PRO/E software, which was inserted into ANSYS. Next, the instantaneous dynamic analysis of the new stirring kneader shaft was carried out. The instantaneous dynamic response of stirring shaft about the exciting force of fluid was obtained, which was to optimize the structural parameters of the stirring shaft. The foundation for the next fatigue analysis was laid based on the instantaneous dynamic response; the fatigue life of stirring kneader shaft can be predicted.


2002 ◽  
Vol 73 (4) ◽  
pp. 1122-1129 ◽  
Author(s):  
Ramakrishna Gnyaneshwar ◽  
Ramarathnam Krishna Kumar ◽  
Komarakshi R Balakrishnan

Sign in / Sign up

Export Citation Format

Share Document