Instantaneous Dynamic Analysis of the New Stirring Kneader Shaft

2011 ◽  
Vol 221 ◽  
pp. 472-477
Author(s):  
Zhi Min Fan ◽  
Guang Ting Zhou ◽  
Jian Ping Liu

The finite element model of the stirring kneader shaft was built by PRO/E software, which was inserted into ANSYS. Next, the instantaneous dynamic analysis of the new stirring kneader shaft was carried out. The instantaneous dynamic response of stirring shaft about the exciting force of fluid was obtained, which was to optimize the structural parameters of the stirring shaft. The foundation for the next fatigue analysis was laid based on the instantaneous dynamic response; the fatigue life of stirring kneader shaft can be predicted.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
B. Asgari ◽  
S. A. Osman ◽  
A. Adnan

The model tuning through sensitivity analysis is a prominent procedure to assess the structural behavior and dynamic characteristics of cable-stayed bridges. Most of the previous sensitivity-based model tuning methods are automatic iterative processes; however, the results of recent studies show that the most reasonable results are achievable by applying the manual methods to update the analytical model of cable-stayed bridges. This paper presents a model updating algorithm for highly redundant cable-stayed bridges that can be used as an iterative manual procedure. The updating parameters are selected through the sensitivity analysis which helps to better understand the structural behavior of the bridge. The finite element model of Tatara Bridge is considered for the numerical studies. The results of the simulations indicate the efficiency and applicability of the presented manual tuning method for updating the finite element model of cable-stayed bridges. The new aspects regarding effective material and structural parameters and model tuning procedure presented in this paper will be useful for analyzing and model updating of cable-stayed bridges.


2021 ◽  
Vol 18 ◽  
pp. 175682932110433
Author(s):  
Shanyong Zhao ◽  
Zhen Liu ◽  
Ke Lu ◽  
Dacheng Su ◽  
Shangjing Wu

In this paper, the bionic membrane structure is introduced to improve the aerodynamic performance of nano rotor at the low Reynolds number. The aerodynamic characteristics of nano rotor made of hyperelastic material as membrane blades are studied. Firstly, based on the hyperelastic constitutive model, a finite element model of the rotor is established and compared with the results of the modal test to verify the accuracy of the model. Then the computational fluid dynamics model of membrane nano rotor is established which combined with the finite element model. The aerodynamic characteristics of the membrane rotor under hovering conditions are studied using fluid–structure interaction method. It is found that the calculation results matched well with the experiment results. The design of the structural parameters such as the membrane proportion, shape, and position of the membrane rotor is optimized. The influence of each parameter on the aerodynamic performance of the rotor is obtained. Under certain structural conditions, the performance can be effectively improved, which provides a new idea for the design of the nano rotor.


Author(s):  
Lili Zhang ◽  
Tingli Xie ◽  
Jiexiang Hu ◽  
Ping Jiang ◽  
Jasuk Koo ◽  
...  

Abstract In this study, an additive scaling function based multi-fidelity (ASF-MF) surrogate model is constructed to fast predict fatigue life as well as the stress distribution for the welded single lap joint. The influence of leg length, leg height, the width of the specimen and load in the fatigue test are taken into consideration. In the construction of the MF surrogate model, the finite element model that is calibrated with the experiment is chosen as the high-fidelity (HF) model. While the finite element model that is not calibrated with the experiment is considered as the low-fidelity (LF) model, aiming to capture the trend of the HF model. The Leave-one-out (LOO) verification method is utilized to compare the prediction performance of the ASF-MF surrogate model with that of the single-fidelity Kriging surrogate model. Results show that the ASF-MF surrogate model can better predict the fatigue life as well as the stress distribution.


2013 ◽  
Vol 364 ◽  
pp. 42-45
Author(s):  
Yong Yan Wang ◽  
Xiao Liang Liu ◽  
Wen Bin Wei ◽  
Nan Qin

Simulation of simplified the part structures of vibration screen by ANSYS software, and then establishes the finite element model of the linear vibration screen. Modal analysis and harmonic analysis of finite element model, and then according to the analysis results corresponding local structural modifications and adjust the center of mass of the modified vibration screen. Last verified the rationality of structure optimization.


2011 ◽  
Vol 120 ◽  
pp. 81-84
Author(s):  
Jian Hua Wang ◽  
Jian Hua ◽  
Chao Li

Fatigue rupture is the major reason of crankshaft parts failure. Traditional fatigue analysis is fairly complicated and causes a great error. The finite element model of s195 engine crankshaft is created under SolidWorks environment, whose static analysis and fatigue analysis is carried out by using Simulation module. Also the vibration character of the crankshaft is calculated through modal analysis. Result shows the fatigue strength of the crankshaft is enough and it will not produce resonance in operation.


1991 ◽  
Vol 113 (4) ◽  
pp. 419-424 ◽  
Author(s):  
T. R. Kim ◽  
K. F. Ehmann ◽  
S. M. Wu

A new methodology of combining the finite element model of a complex structure with its model obtained by experimental modal analysis techniques is presented to identify the joint stiffness and the damping characteristics between its substructures. First, the modal parameters of the structure with joints are extracted based on experimental data using Autoregressive Moving Average Vector models. Then, a condensation technique based on the Riccati iteration algorithm and the orthogonality conditions is applied to reduce the matrix order of the finite element model to match the order of the experimental model. Comparing the two models, the unknown joint parameters are estimated based on the least squares method. The accuracy and the effectiveness of the proposed method were verified through simulation studies.


2013 ◽  
Vol 690-693 ◽  
pp. 1960-1965 ◽  
Author(s):  
Sheng Qu ◽  
Ping Bo Wu ◽  
Zhuan Hua Liu

G70 Tank car uesd for transportation on liquidsliquids of gas and bulck goods in form of powder,is one of the major class of Chinese railroad freight cars.And the tank car makes about 18% of the toatal amount of freight cars. In this stduy, the carbdoy finite element model of tank car was constructed,and calculated stress of carbody both empty car and fully loaded car,then get the results of key postsitions. According to the AAR load spectrums on the part of the tank car,translated the results into dynamic stress through the quasi-static method. Calculated the damage of carbody with the fatigue analysis method provied in AAR, compared the fatigue life under various comonent.


2000 ◽  
Vol 37 (03) ◽  
pp. 117-128
Author(s):  
T. V. S. R. Appa Rao ◽  
Nagesh R. Iyer ◽  
J. Rajasankar ◽  
G. S. Palani

Finite-element modeling and use of appropriate analytical techniques play a significant role in producing a reliable and economic design for ship hull structures subjected to dynamic loading. The paper presents investigations carried out for the dynamic response analysis of ship hull structures using the finite-element method. A simple and efficient interactive graphical preprocessing technique based on the "keynode" concept and assembly-line procedure is used to develop the finite-element model of the hull structure. The technique makes use of the body plan of a ship hull to build the finite-element model through an interactive session. Stiffened plate/shell finite elements suitable to model the hull structure are formulated and used to model the structure. The finite elements take into account arbitrary placement of stiffeners in an element without increasing the number of degrees-of-freedom of the element. A three-dimensional finite-element model and a procedure based on the Bubnov-Galerkin residual approach are employed to evaluate the effects of interaction between the ship hull and water. Mode superposition technique is used to conduct the dynamic response analysis. The efficiency of the finite elements and the procedures is demonstrated through dynamic analysis of a submerged cantilever plate and a barge when both are subjected to sinusoidal forces. The dynamic responses exhibit expected behavior of the structure and a comparison with the results available in the literature indicate superior performance of the finite element and methodologies developed. Thus, the finite-element models and the procedures are found to be efficient and hence suitable for the dynamic analysis of similar structures.


Sign in / Sign up

Export Citation Format

Share Document