TESTING THE DESCRIPTIONAL POWER OF SMALL TURING MACHINES ON NONREGULAR LANGUAGE ACCEPTANCE

2008 ◽  
Vol 19 (04) ◽  
pp. 827-843 ◽  
Author(s):  
CARLO MEREGHETTI

We study lower bounds on space and input head reversals for deterministic, nondeterministic, and alternating Turing machines accepting nonregular languages. Three notions of space, namely strong, middle, weak are considered, and another notion, called accept, is introduced. In all cases, we obtain tight lower bounds. Moreover, we show that, while for determinism and nondeterminism such lower bounds are optimal even with respect to unary languages, for alternation optimal lower bounds for unary languages turn out to be strictly higher than those for languages over alphabets with two or more symbols.

Author(s):  
KATSUSHI INOUE ◽  
ITSUO SAKURAMOTO ◽  
MAKOTO SAKAMOTO ◽  
ITSUO TAKANAMI

This paper deals with two topics concerning two-dimensional automata operating in parallel. We first investigate a relationship between the accepting powers of two-dimensional alternating finite automata (2-AFAs) and nondeterministic bottom-up pyramid cellular acceptors (NUPCAs), and show that Ω ( diameter × log diameter ) time is necessary for NUPCAs to simulate 2-AFAs. We then investigate space complexity of two-dimensional alternating Turing machines (2-ATMs) operating in small space, and show that if L (n) is a two-dimensionally space-constructible function such that lim n → ∞ L (n)/ loglog n > 1 and L (n) ≤ log n, and L′ (n) is a function satisfying L′ (n) =o (L(n)), then there exists a set accepted by some strongly L (n) space-bounded two-dimensional deterministic Turing machine, but not accepted by any weakly L′ (n) space-bounded 2-ATM, and thus there exists a rich space hierarchy for weakly S (n) space-bounded 2-ATMs with loglog n ≤ S (n) ≤ log n.


Author(s):  
Serge Miguet ◽  
Annick Montanvert ◽  
P. S. P. Wang

Several nonclosure properties of each class of sets accepted by two-dimensional alternating one-marker automata, alternating one-marker automata with only universal states, nondeterministic one-marker automata, deterministic one-marker automata, alternating finite automata, and alternating finite automata with only universal states are shown. To do this, we first establish the upper bounds of the working space used by "three-way" alternating Turing machines with only universal states to simulate those "four-way" non-storage machines. These bounds provide us a simplified and unified proof method for the whole variants of one-marker and/or alternating finite state machine, without directly analyzing the complex behavior of the individual four-way machine on two-dimensional rectangular input tapes. We also summarize the known closure properties including Boolean closures for all the variants of two-dimensional alternating one-marker automata.


1987 ◽  
Vol 54 (2-3) ◽  
pp. 331-339 ◽  
Author(s):  
Maciej Liśkiewicz ◽  
Krzysztof Loryś ◽  
Marek Piotrów

2014 ◽  
Vol 25 (07) ◽  
pp. 877-896 ◽  
Author(s):  
MARTIN KUTRIB ◽  
ANDREAS MALCHER ◽  
MATTHIAS WENDLANDT

We investigate the descriptional complexity of deterministic one-way multi-head finite automata accepting unary languages. It is known that in this case the languages accepted are regular. Thus, we study the increase of the number of states when an n-state k-head finite automaton is simulated by a classical (one-head) deterministic or nondeterministic finite automaton. In the former case upper and lower bounds that are tight in the order of magnitude are shown. For the latter case we obtain an upper bound of O(n2k) and a lower bound of Ω(nk) states. We investigate also the costs for the conversion of one-head nondeterministic finite automata to deterministic k-head finite automata, that is, we trade nondeterminism for heads. In addition, we study how the conversion costs vary in the special case of finite and, in particular, of singleton unary lanuages. Finally, as an application of the simulation results, we show that decidability problems for unary deterministic k-head finite automata such as emptiness or equivalence are LOGSPACE-complete.


Author(s):  
TOKIO OKAZAKI ◽  
KATSUSHI INOUE ◽  
AKIRA ITO ◽  
YUE WANG

This paper investigates closure property of the classes of sets accepted by space-bounded two-dimensional alternating Turing machines (2-atm's) and space-bounded two-dimensional alternating pushdown automata (2-apda's), and space-bounded two-dimensional alternating counter automata (2-aca's). Let L(m, n): N2 → N (N denotes the set of all positive integers) be a function with two variables m (= the number of rows of input tapes) and n (= the number of columns of input tapes). We show that (i) for any function f(m) = o( log m) (resp. f(m) = o( log m/ log log m)) and any monotonic nondecreasing function g(n) space-constructible by a two-dimensional Turing machine (2-Tm) (resp. two-dimensional pushdown automaton (2-pda)), the class of sets accepted by L(m,n) space-bounded 2-atm's (2-apda's) is not closed under row catenation, row + or projection, and (ii) for any function f(m) = o(m/ log ) (resp. for any function f(m) such that log f(m) = o( log m)) and any monotonic nondecreasing function g(n) space-constructible by a two-dimensional counter automaton (2-ca), the class of sets accepted by L(m, n) space-bounded 2-aca's is not closed under row catenation, row + or projection, where L(m, n) = f(m) + g(n) (resp. L(m, n) = f(m) × g(n)).


1994 ◽  
Vol 4 (4) ◽  
pp. 435-477 ◽  
Author(s):  
Fritz Henglein ◽  
Harry G. Mairson

AbstractWe analyse the computational complexity of type inference for untyped λ-terms in the second-order polymorphic typed λ-calculus (F2) invented by Girard and Reynolds, as well as higher-order extensions F3, F4, …, Fω proposed by Girard. We prove that recognising the F2-typable terms requires exponential time, and for Fω the problem is non-elementary. We show as well a sequence of lower bounds on recognising the Fk-typable terms, where the bound for Fk+1 is exponentially larger than that for Fk.The lower bounds are based on generic simulation of Turing Machines, where computation is simulated at the expression and type level simultaneously. Non-accepting computations are mapped to non-normalising reduction sequences, and hence non-typable terms. The accepting computations are mapped to typable terms, where higher-order types encode reduction sequences, and first-order types encode the entire computation as a circuit, based on a unification simulation of Boolean logic. A primary technical tool in this reduction is the composition of polymorphic functions having different domains and ranges.These results are the first nontrivial lower bounds on type inference for the Girard/Reynolds system as well as its higher-order extensions. We hope that the analysis provides important combinatorial insights which will prove useful in the ultimate resolution of the complexity of the type inference problem.


Sign in / Sign up

Export Citation Format

Share Document