NONDETERMINISTIC FINITE AUTOMATA — RECENT RESULTS ON THE DESCRIPTIONAL AND COMPUTATIONAL COMPLEXITY

2009 ◽  
Vol 20 (04) ◽  
pp. 563-580 ◽  
Author(s):  
MARKUS HOLZER ◽  
MARTIN KUTRIB

Nondeterministic finite automata (NFAs) were introduced in [68], where their equivalence to deterministic finite automata was shown. Over the last 50 years, a vast literature documenting the importance of finite automata as an enormously valuable concept has been developed. In the present paper, we tour a fragment of this literature. Mostly, we discuss recent developments relevant to NFAs related problems like, for example, (i) simulation of and by several types of finite automata, (ii) minimization and approximation, (iii) size estimation of minimal NFAs, and (iv) state complexity of language operations. We thus come across descriptional and computational complexity issues of nondeterministic finite automata. We do not prove these results but we merely draw attention to the big picture and some of the main ideas involved.

Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 338
Author(s):  
Cezar Câmpeanu

Deterministic Finite Cover Automata (DFCA) are compact representations of finite languages. Deterministic Finite Automata with “do not care” symbols and Multiple Entry Deterministic Finite Automata are both compact representations of regular languages. This paper studies the benefits of combining these representations to get even more compact representations of finite languages. DFCAs are extended by accepting either “do not care” symbols or considering multiple entry DFCAs. We study for each of the two models the existence of the minimization or simplification algorithms and their computational complexity, the state complexity of these representations compared with other representations of the same language, and the bounds for state complexity in case we perform a representation transformation. Minimization for both models proves to be NP-hard. A method is presented to transform minimization algorithms for deterministic automata into simplification algorithms applicable to these extended models. DFCAs with “do not care” symbols prove to have comparable state complexity as Nondeterministic Finite Cover Automata. Furthermore, for multiple entry DFCAs, we can have a tight estimate of the state complexity of the transformation into equivalent DFCA.


2007 ◽  
Vol 18 (06) ◽  
pp. 1407-1416 ◽  
Author(s):  
KAI SALOMAA ◽  
PAUL SCHOFIELD

It is known that the neighborhood of a regular language with respect to an additive distance is regular. We introduce an additive weighted finite automaton model that provides a conceptually simple way to reprove this result. We consider the state complexity of converting additive weighted finite automata to deterministic finite automata. As our main result we establish a tight upper bound for the state complexity of the conversion.


2019 ◽  
Vol 30 (01) ◽  
pp. 115-134 ◽  
Author(s):  
Michal Hospodár ◽  
Galina Jirásková ◽  
Peter Mlynárčik

We examine the descriptional complexity of the forever operator, which assigns the language [Formula: see text] to a regular language [Formula: see text], and we investigate the trade-offs between various models of finite automata. We consider complete and partial deterministic finite automata, nondeterministic finite automata with single or multiple initial states, alternating, and Boolean finite automata. We assume that the argument and the result of this operation are accepted by automata belonging to one of these six models. We investigate all possible trade-offs and provide a tight upper bound for 32 of 36 of them. The most interesting result is the trade-off from nondeterministic to deterministic automata given by the Dedekind number [Formula: see text]. We also prove that the nondeterministic state complexity of [Formula: see text] is [Formula: see text] which solves an open problem stated by Birget [The state complexity of [Formula: see text] and its connection with temporal logic, Inform. Process. Lett. 58 (1996) 185–188].


2021 ◽  
Vol 27 (4) ◽  
pp. 324-340
Author(s):  
Martin Berglund ◽  
Brink van der Merwe ◽  
Steyn van Litsenborgh

This paper investigates regular expressions which in addition to the standard operators of union, concatenation, and Kleene star, have lookaheads. We show how to translate regular expressions with lookaheads (REwLA) to equivalent Boolean automata having at most 3 states more than the length of the REwLA. We also investigate the state complexity when translating REwLA to equivalent deterministic finite automata (DFA).


Author(s):  
Robert S. R. Myers ◽  
Stefan Milius ◽  
Henning Urbat

AbstractWe introduce a new measure on regular languages: their nondeterministic syntactic complexity. It is the least degree of any extension of the ‘canonical boolean representation’ of the syntactic monoid. Equivalently, it is the least number of states of any subatomic nondeterministic acceptor. It turns out that essentially all previous structural work on nondeterministic state-minimality computes this measure. Our approach rests on an algebraic interpretation of nondeterministic finite automata as deterministic finite automata endowed with semilattice structure. Crucially, the latter form a self-dual category.


2019 ◽  
Vol 30 (06n07) ◽  
pp. 959-978
Author(s):  
Jürgen Dassow

Let [Formula: see text] be the minimal number of accepting states which is sufficient for deterministic finite automata to accept [Formula: see text]. For a number [Formula: see text] and an [Formula: see text]-ary regularity preserving operation ∘, we define [Formula: see text] as the set of all integers [Formula: see text] such that there are [Formula: see text] languages [Formula: see text], [Formula: see text], with [Formula: see text] In this paper, we study these sets for the operations union, catenation, star, complement, set-subtraction, and intersection where we restrict to unary or finite or unary and finite languages [Formula: see text].


2013 ◽  
Vol 24 (07) ◽  
pp. 1083-1097 ◽  
Author(s):  
MARKUS HOLZER ◽  
SEBASTIAN JAKOBI

We introduce E-equivalence, which is a straightforward generalization of almost-equivalence. While almost-equivalence asks for ordinary equivalence up to a finite number of exceptions, in E-equivalence these exceptions or errors must belong to a (regular) set E. The computational complexity of deterministic finite automata (DFAs) minimization problems and their variants w.r.t. almost- and E-equivalence are studied. We show that there is a significant difference in the complexity of problems related to almost-equivalence, and those related to E-equivalence. Moreover, since hyper-minimal and E-minimal automata are not necessarily unique (up to isomorphism as for minimal DFAs), we consider the problem of counting the number of these minimal automata.


Sign in / Sign up

Export Citation Format

Share Document