ORDINAL AUTOMATA AND CANTOR NORMAL FORM

2012 ◽  
Vol 23 (01) ◽  
pp. 87-98
Author(s):  
ZOLTÁN ÉSIK

It is known that an ordinal is the order type of the lexicographic ordering of a regular language if and only if it is less than ωω. We design a polynomial time algorithm that constructs, for each well-ordered regular language L with respect to the lexicographic ordering, given by a deterministic finite automaton, the Cantor Normal Form of its order type. It follows that there is a polynomial time algorithm to decide whether two deterministic finite automata accepting well-ordered regular languages accept isomorphic languages. We also give estimates on the state complexity of the smallest "ordinal automaton" representing an ordinal less than ωω, together with an algorithm that translates each such ordinal to an automaton.

2011 ◽  
Vol 22 (08) ◽  
pp. 1813-1828 ◽  
Author(s):  
VOLKER DIEKERT ◽  
STEFFEN KOPECKI

The hairpin completion is an operation on formal languages which is inspired by the hairpin formation in biochemistry. Hairpin formations occur naturally within DNA-computing. It has been known that the hairpin completion of a regular language is linear context-free, but not regular, in general. However, for some time it is was open whether the regularity of the hairpin completion of a regular language is decidable. In 2009 this decidability problem has been solved positively in [5] by providing a polynomial time algorithm. In this paper we improve the complexity bound by showing that the decision problem is actually NL-complete. This complexity bound holds for both, the one-sided and the two-sided hairpin completions.


2006 ◽  
Vol 17 (02) ◽  
pp. 379-393 ◽  
Author(s):  
YO-SUB HAN ◽  
YAJUN WANG ◽  
DERICK WOOD

We study infix-free regular languages. We observe the structural properties of finite-state automata for infix-free languages and develop a polynomial-time algorithm to determine infix-freeness of a regular language using state-pair graphs. We consider two cases: 1) A language is specified by a nondeterministic finite-state automaton and 2) a language is specified by a regular expression. Furthermore, we examine the prime infix-free decomposition of infix-free regular languages and design an algorithm for the infix-free primality test of an infix-free regular language. Moreover, we show that we can compute the prime infix-free decomposition in polynomial time. We also demonstrate that the prime infix-free decomposition is not unique.


2008 ◽  
Vol 19 (03) ◽  
pp. 717-727
Author(s):  
BALA RAVIKUMAR

For a string w ∈ {0,1, 2,…, d-1}*, let vald(w) denote the integer whose base d representation is the string w and let MSDd(x) denote the most significant or the leading digit of a positive integer x when x is written as a base d integer. Hirvensalo and Karhumäki [9] studied the problem of computing the leading digit in the ternary representation of 2x ans showed that this problem has a polynomial time algorithm. In [16], some applications are presented for the problem of computing the leading digit of AB for given inputs A and B. In this paper, we study this problem from a formal language point of view. Formally, we consider the language Lb,d,j = {w|w ∈ {0,1, 2,…, d-1}*, 1 ≤ j ≤ 9, MSDb(dvalb(w))) = j} (and some related classes of languages) and address the question of whether this and some related languages are context-free. Standard pumping lemma proofs seem to be very difficult for these languages. We present a unified and simple combinatorial technique that shows that these languages are not unambiguous context-free languages. The Benford-Newcomb distribution plays a central role in our proofs.


10.29007/v68w ◽  
2018 ◽  
Author(s):  
Ying Zhu ◽  
Mirek Truszczynski

We study the problem of learning the importance of preferences in preference profiles in two important cases: when individual preferences are aggregated by the ranked Pareto rule, and when they are aggregated by positional scoring rules. For the ranked Pareto rule, we provide a polynomial-time algorithm that finds a ranking of preferences such that the ranked profile correctly decides all the examples, whenever such a ranking exists. We also show that the problem to learn a ranking maximizing the number of correctly decided examples (also under the ranked Pareto rule) is NP-hard. We obtain similar results for the case of weighted profiles when positional scoring rules are used for aggregation.


Sign in / Sign up

Export Citation Format

Share Document