EFFICIENT HIGHER-ORDER NEURAL NETWORKS FOR CLASSIFICATION AND FUNCTION APPROXIMATION

1992 ◽  
Vol 03 (04) ◽  
pp. 323-350 ◽  
Author(s):  
JOYDEEP GHOSH ◽  
YOAN SHIN

This paper introduces a class of higher-order networks called pi-sigma networks (PSNs). PSNs are feedforward networks with a single “hidden” layer of linear summing units and with product units in the output layer. A PSN uses these product units to indirectly incorporate the capabilities of higher-order networks while greatly reducing network complexity. PSNs have only one layer of adjustable weights and exhibit fast learning. A PSN with K summing units provides a constrained Kth order approximation of a continuous function. A generalization of the PSN is presented that can uniformly approximate any continuous function defined on a compact set. The use of linear hidden units makes it possible to mathematically study the convergence properties of various LMS type learning algorithms for PSNs. We show that it is desirable to update only a partial set of weights at a time rather than synchronously updating all the weights. Bounds for learning rates which guarantee convergence are derived. Several simulation results on pattern classification and function approximation problems highlight the capabilities of the PSN. Extensive comparisons are made with other higher order networks and with multilayered perceptrons. The neurobiological plausibility of PSN type networks is also discussed.

1995 ◽  
Vol 7 (2) ◽  
pp. 338-348 ◽  
Author(s):  
G. Deco ◽  
D. Obradovic

This paper presents a new learning paradigm that consists of a Hebbian and anti-Hebbian learning. A layer of radial basis functions is adapted in an unsupervised fashion by minimizing a two-element cost function. The first element maximizes the output of each gaussian neuron and it can be seen as an implementation of the traditional Hebbian learning law. The second element of the cost function reinforces the competitive learning by penalizing the correlation between the nodes. Consequently, the second term has an “anti-Hebbian” effect that is learned by the gaussian neurons without the implementation of lateral inhibition synapses. Therefore, the decorrelated Hebbian learning (DHL) performs clustering in the input space avoiding the “nonbiological” winner-take-all rule. In addition to the standard clustering problem, this paper also presents an application of the DHL in function approximation. A scaled piece-wise linear approximation of a function is obtained in the supervised fashion within the local regions of its domain determined by the DHL. For comparison, a standard single hidden-layer gaussian network is optimized with the initial centers corresponding to the DHL. The efficiency of the algorithm is demonstrated on the chaotic Mackey-Glass time series.


Author(s):  
Mohammed Sadiq Al-Rawi ◽  
Kamal R. Al-Rawi

In this chapter, we study the equivalence between multilayer feedforward neural networks referred as Ordinary Neural Networks (ONNs) that contain only summation (Sigma) as activation units, and multilayer feedforward Higher order Neural Networks (HONNs) that contains Sigma and product (PI) activation units. Since the time they were introduced by Giles and Maxwell (1987), HONNs have been used in many supervised classification and function approximation. Up to the date of writing this chapter, the most cited HONN article by ISI Thomson Web of Knowledge is the work of Kosmatopoulos et al., (1995) by which they introduced a recurrent HONN modeling. A simple comparison with ONNs is usually performed in order to demonstrate the performance of some newly introduced HONN architecture. Is it true that HONNs outperform ONNs, how much do they differ? And how much do they commute? Does equivalence exists between a HONN and an ONN? Is it possible to convert a HONN to an equivalent ONN? And how neural network equivalence is defined? This chapter tries to answer most of these questions. Due to the existence of huge neural networks architectures in the literature, the authors of this work are concerned and think that equivalence studies are necessary to give abstract definitions and unified approaches which might help in better understanding of HONNs performance and their respective design. On contrary to most of the previous works were HONN weights are non-negative integers, HONNs are given in this chapter in a form such that weights are adjustable real-valued numbers. In doing that, HONNs might have more expressive power and there is an increase probability of having complex valued neuron outputs. To enable the use of the real-valued weights that may result in a complex valued neuron output we introduce normalization to the input data as well as a modification to neuron activation functions. Using simple mathematics and the proposed normalization to input data, we showed that HONNs are equivalent to ONNs. The converted equivalent ONN posses the features of HONN and they have exactly the same functionality and output. The proposed conversion of HONN to ONN would permit using the huge amount of optimization algorithms to speed up the convergence of HONN and/or finding better topology. Recurrent HONNs, cascaded correlation HONNs, or any other complicated HONN can be simply defined via their equivalent ONNs and then trained with backpropagation, scaled conjugate gradient, Lavenberg-Marqudat algorithm, brain damage algorithms (Duda et al., 2000), etc. Using the developed equivalency model, this chapter also gives an easy bottom-up approach to convert a HONN to its equivalent ONN. Results on XOR and function approximation problems showed that ONNs obtained from their corresponding HONNs converged well to a solution. Different optimization training algorithms have been tested equivalent ONNs having feedforward structure and/or cascade correlation where the later have shown outstanding function approximation results.


2013 ◽  
Vol 457-458 ◽  
pp. 1102-1106
Author(s):  
Hao Teng ◽  
Shu Hui Liu ◽  
Yue Hui Chen

The FlexibleNeural Tree uses a tree structure coding and has excellent predictiveability and function approximation capabilities. Due to it, a quantum neural tree model ispresented based on the multi-level transfer function quantum neuralnetwork and Flexible Neural Tree. In the new model, based on the structure of FlexibleNeural Tree, the transfer function of hidden layer quantum neurons is insteadof multiple superposition oftraditional transfer function, makes the model has a kind of inherent ambiguity.This paper used the improved neural tree asprediction model, particle swarm optimization to optimize the parameters of neuraltree, used probabilistic incremental program evolution to optimizethe structure of neural tree. The experiment result for stock index predictionshows the now method can improve the predictive accuracy rate


Big Data ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 255-269 ◽  
Author(s):  
Mandana Saebi ◽  
Giovanni Luca Ciampaglia ◽  
Lance M. Kaplan ◽  
Nitesh V. Chawla

2017 ◽  
Vol 14 (135) ◽  
pp. 20170484 ◽  
Author(s):  
Matthew D. B. Jackson ◽  
Salva Duran-Nebreda ◽  
George W. Bassel

Multicellularity and cellular cooperation confer novel functions on organs following a structure–function relationship. How regulated cell migration, division and differentiation events generate cellular arrangements has been investigated, providing insight into the regulation of genetically encoded patterning processes. Much less is known about the higher-order properties of cellular organization within organs, and how their functional coordination through global spatial relations shape and constrain organ function. Key questions to be addressed include: why are cells organized in the way they are? What is the significance of the patterns of cellular organization selected for by evolution? What other configurations are possible? These may be addressed through a combination of global cellular interaction mapping and network science to uncover the relationship between organ structure and function. Using this approach, global cellular organization can be discretized and analysed, providing a quantitative framework to explore developmental processes. Each of the local and global properties of integrated multicellular systems can be analysed and compared across different tissues and models in discrete terms. Advances in high-resolution microscopy and image analysis continue to make cellular interaction mapping possible in an increasing variety of biological systems and tissues, broadening the further potential application of this approach. Understanding the higher-order properties of complex cellular assemblies provides the opportunity to explore the evolution and constraints of cell organization, establishing structure–function relationships that can guide future organ design.


2019 ◽  
Vol 35 (2) ◽  
pp. 147-152
Author(s):  
LARISA CHEREGI ◽  
VICUTA NEAGOS ◽  
◽  

We generalize the Pompeiu mean-value theorem by replacing the graph of a continuous function with a compact set.


Sign in / Sign up

Export Citation Format

Share Document