DISCRIMINATIVE NONLINEAR DIMENSIONALITY REDUCTION FOR IMPROVED CLASSIFICATION

1994 ◽  
Vol 05 (04) ◽  
pp. 313-333 ◽  
Author(s):  
MARK DOLSON

Multi-Layer Perceptron (MLP) neural networks have been used extensively for classification tasks. Typically, the MLP network is trained explicitly to produce the correct classification as its output. For speech recognition, however, several investigators have recently experimented with an indirect approach: a unique MLP predictive network is trained for each class of data, and classification is accomplished by determining which predictive network serves as the best model for samples of unknown speech. Results from this approach have been mixed. In this report, we compare the direct and indirect approaches to classification from a more fundamental perspective. We show how recent advances in nonlinear dimensionality reduction can be incorporated into the indirect approach, and we show how the two approaches can be integrated in a novel MLP framework. We further show how these new MLP networks can be usefully viewed as generalizations of Learning Vector Quantization (LVQ) and of subspace methods of pattern recognition. Lastly, we show that applying these ideas to the classification of temporal trajectories can substantially improve performance on simple tasks.

Author(s):  
D T Pham ◽  
E J Bayro-Corrochano

This paper discusses the application of a back-propagation multi-layer perceptron and a learning vector quantization network to the classification of defects in valve stem seals for car engines. Both networks were trained with vectors containing descriptive attributes of known flaws. These attribute vectors (‘signatures’) were extracted from images of the seals captured by an industrial vision system. The paper describes the hardware and techniques used and the results obtained.


2014 ◽  
pp. 32-42
Author(s):  
Matthieu Voiry ◽  
Kurosh Madani ◽  
Véronique Véronique Amarger ◽  
Joël Bernier

A major step for high-quality optical surfaces faults diagnosis concerns scratches and digs defects characterization in products. This challenging operation is very important since it is directly linked with the produced optical component’s quality. A classification phase is mandatory to complete optical devices diagnosis since a number of correctable defects are usually present beside the potential “abiding” ones. Unfortunately relevant data extracted from raw image during defects detection phase are high dimensional. This can have harmful effect on the behaviors of artificial neural networks which are suitable to perform such a challenging classification. Reducing data dimension to a smaller value can decrease the problems related to high dimensionality. In this paper we compare different techniques which permit dimensionality reduction and evaluate their impact on classification tasks performances.


2020 ◽  
Vol 12 (17) ◽  
pp. 2726 ◽  
Author(s):  
Yongguang Zhai ◽  
Nan Wang ◽  
Lifu Zhang ◽  
Lei Hao ◽  
Caihong Hao

Accurate and timely information on the spatial distribution of crops is of great significance to precision agriculture and food security. Many cropland mapping methods using satellite image time series are based on expert knowledge to extract phenological features to identify crops. It is still a challenge to automatically obtain meaningful features from time-series data for crop classification. In this study, we developed an automated method based on satellite image time series to map the spatial distribution of three major crops including maize, rice, and soybean in northeastern China. The core method used is the nonlinear dimensionality reduction technique. However, the existing nonlinear dimensionality reduction technique cannot handle missing data, and it is not designed for subsequent classification tasks. Therefore, the nonlinear dimensionality reduction algorithm Landmark–Isometric feature mapping (L–ISOMAP) is improved. The advantage of the improved L–ISOMAP is that it does not need to reconstruct time series for missing data, and it can automatically obtain meaningful featured metrics for classification. The improved L–ISOMAP was applied to Landsat 8 full-band time-series data during the crop-growing season in the three northeastern provinces of China; then, the dimensionality reduction bands were inputted into a random forest classifier to complete a crop distribution map. The results show that the area of crops mapped is consistent with official statistics. The 2015 crop distribution map was evaluated through the collected reference dataset, and the overall classification accuracy and Kappa index were 83.68% and 0.7519, respectively. The geographical characteristics of major crops in three provinces in northeast China were analyzed. This study demonstrated that the improved L–ISOMAP method can be used to automatically extract features for crop classification. For future work, there is great potential for applying automatic mapping algorithms to other data or classification tasks.


2009 ◽  
Vol 19 (11) ◽  
pp. 2908-2920
Author(s):  
De-Yu MENG ◽  
Nan-Nan GU ◽  
Zong-Ben XU ◽  
Yee LEUNG

Sign in / Sign up

Export Citation Format

Share Document