scholarly journals HODGE POLYNOMIALS OF THE MODULI SPACES OF PAIRS

2007 ◽  
Vol 18 (06) ◽  
pp. 695-721 ◽  
Author(s):  
VICENTE MUÑOZ ◽  
DANIEL ORTEGA ◽  
MARIA-JESÚS VÁZQUEZ-GALLO

Let X be a smooth projective curve of genus g ≥ 2 over the complex numbers. A holomorphic pair on X is a couple (E, ϕ), where E is a holomorphic bundle over X of rank n and degree d, and ϕ ∈ H0(E) is a holomorphic section. In this paper, we determine the Hodge polynomials of the moduli spaces of rank 2 pairs, using the theory of mixed Hodge structures. We also deal with the case in which E has fixed determinant.

Author(s):  
Oscar García-Prada ◽  
S. Ramanan

This chapter considers the moduli space of rank 2 Higgs bundles with fixed determinant over a smooth projective curve X of genus 2 over ℂ, and studies involutions defined by tensoring the vector bundle with an element α‎ of order 2 in the Jacobian of the curve, combined with multiplication of the Higgs field by ±1. It describes the fixed points of these involutions in terms of the Prym variety of the covering of X defined by α‎, and gives an interpretation in terms of the moduli space of representations of the fundamental group.


2021 ◽  
Vol 30 (1) ◽  
pp. 66-89
Author(s):  
Lie Fu ◽  
◽  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

<abstract><p>We prove formulas for the rational Chow motives of moduli spaces of semistable vector bundles and Higgs bundles of rank $ 3 $ and coprime degree on a smooth projective curve. Our approach involves identifying criteria to lift identities in (a completion of) the Grothendieck group of effective Chow motives to isomorphisms in the category of Chow motives. For the Higgs moduli space, we use motivic Białynicki-Birula decompositions associated with a scaling action, together with the variation of stability and wall-crossing for moduli spaces of rank $ 2 $ pairs, which occur in the fixed locus of this action.</p></abstract>


2010 ◽  
Vol 21 (11) ◽  
pp. 1505-1529 ◽  
Author(s):  
VICENTE MUÑOZ

Let X be a smooth projective curve of genus g ≥ 2 over ℂ. Fix n ≥ 2, d ∈ ℤ. A pair (E, ϕ) over X consists of an algebraic vector bundle E of rank n and degree d over X and a section ϕ ∈ H0(E). There is a concept of stability for pairs which depends on a real parameter τ. Let [Formula: see text] be the moduli space of τ-semistable pairs of rank n and degree d over X. Here we prove that the cohomology groups of [Formula: see text] are Hodge structures isomorphic to direct summands of tensor products of the Hodge structure H1(X). This implies a similar result for the moduli spaces of stable vector bundles over X.


2016 ◽  
Vol 225 ◽  
pp. 185-206
Author(s):  
ARATA KOMYO

In this paper, we investigate the mixed Hodge structures of the moduli space of $\boldsymbol{\unicode[STIX]{x1D6FC}}$-stable parabolic Higgs bundles and the moduli space of $\boldsymbol{\unicode[STIX]{x1D6FC}}$-stable regular singular parabolic connections. We show that the mixed Hodge polynomials are independent of the choice of generic eigenvalues and the mixed Hodge structures of these moduli spaces are pure. Moreover, by the Riemann–Hilbert correspondence, the Poincaré polynomials of character varieties are independent of the choice of generic eigenvalues.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


2008 ◽  
Vol 144 (3) ◽  
pp. 721-733 ◽  
Author(s):  
Olivier Serman

AbstractWe prove that, given a smooth projective curve C of genus g≥2, the forgetful morphism $\mathcal {M}_{\mathbf {O}_r} \longrightarrow \mathcal {M}_{\mathbf {GL}_r}$ (respectively $\mathcal M_{\mathbf {Sp}_{2r}}\longrightarrow \mathcal M_{\mathbf {GL}_{2r}}$) from the moduli space of orthogonal (respectively symplectic) bundles to the moduli space of all vector bundles over C is an embedding. Our proof relies on an explicit description of a set of generators for the polynomial invariants on the representation space of a quiver under the action of a product of classical groups.


2017 ◽  
Vol 28 (06) ◽  
pp. 1750049
Author(s):  
Indranil Biswas ◽  
Olivier Serman

Let [Formula: see text] be a geometrically irreducible smooth projective curve, of genus at least three, defined over the field of real numbers. Let [Formula: see text] be a connected reductive affine algebraic group, defined over [Formula: see text], such that [Formula: see text] is nonabelian and has one simple factor. We prove that the isomorphism class of the moduli space of principal [Formula: see text]-bundles on [Formula: see text] determine uniquely the isomorphism class of [Formula: see text].


2016 ◽  
Vol 59 (4) ◽  
pp. 865-877
Author(s):  
Sarbeswar Pal

AbstractLet X be a smooth projective curve of arbitrary genus g > 3 over the complex numbers. In this short note we will show that the moduli space of rank 2 stable vector bundles with determinant isomorphic to Lx , where Lx denotes the line bundle corresponding to a point x ∊ X, is isomorphic to a certain variety of lines in the moduli space of S-equivalence classes of semistable bundles of rank 2 with trivial determinant.


2000 ◽  
Vol 43 (2) ◽  
pp. 129-137 ◽  
Author(s):  
E. Ballico

AbstractLet E be a stable rank 2 vector bundle on a smooth projective curve X and V(E) be the set of all rank 1 subbundles of E with maximal degree. Here we study the varieties (non-emptyness, irreducibility and dimension) of all rank 2 stable vector bundles, E, on X with fixed deg(E) and deg(L), L ∈ V(E) and such that .


2020 ◽  
Vol 156 (4) ◽  
pp. 744-769
Author(s):  
Sergey Mozgovoy ◽  
Olivier Schiffmann

We prove a closed formula counting semistable twisted (or meromorphic) Higgs bundles of fixed rank and degree over a smooth projective curve of genus $g$ defined over a finite field, when the twisting line bundle degree is at least $2g-2$ (this includes the case of usual Higgs bundles). This yields a closed expression for the Donaldson–Thomas invariants of the moduli spaces of twisted Higgs bundles. We similarly deal with twisted quiver sheaves of type $A$ (finite or affine), obtaining in particular a Harder–Narasimhan-type formula counting semistable $U(p,q)$-Higgs bundles over a smooth projective curve defined over a finite field.


Sign in / Sign up

Export Citation Format

Share Document