AN IMPORTANT CLASS OF CONFORMALLY FLAT WEAK EINSTEIN FINSLER METRICS

2013 ◽  
Vol 24 (01) ◽  
pp. 1350003 ◽  
Author(s):  
GUANGZU CHEN ◽  
XINYUE CHENG

In this paper, we study conformally flat (α, β)-metrics in the form F = αϕ(β/α), where α is a Riemannian metric and β is a 1-form on a C∞ manifold M. We prove that if ϕ = ϕ(s) is a polynomial in s, the conformally flat weak Einstein (α, β)-metric must be either a locally Minkowski metric or a Riemannian metric. Moreover, we prove that conformally flat (α, β)-metrics with isotropic S-curvature are also either locally Minkowski metrics or Riemannian metrics.

2019 ◽  
Vol 16 (07) ◽  
pp. 1950113
Author(s):  
Guangzu Chen ◽  
Lihong Liu ◽  
Qisen Jiang

The theory of cubic metrics plays an important role in the theory of space-time structure, gravitation and unified gauge field theories. In this paper, we study conformally flat weak Einstein cubic [Formula: see text]-metrics. We prove that such metrics must be either locally Minkowski metric or Riemannian metric.


Author(s):  
Shahriar Aslani ◽  
Patrick Bernard

Abstract In the study of Hamiltonian systems on cotangent bundles, it is natural to perturb Hamiltonians by adding potentials (functions depending only on the base point). This led to the definition of Mañé genericity [ 8]: a property is generic if, given a Hamiltonian $H$, the set of potentials $g$ such that $H+g$ satisfies the property is generic. This notion is mostly used in the context of Hamiltonians that are convex in $p$, in the sense that $\partial ^2_{pp} H$ is positive definite at each point. We will also restrict our study to this situation. There is a close relation between perturbations of Hamiltonians by a small additive potential and perturbations by a positive factor close to one. Indeed, the Hamiltonians $H+g$ and $H/(1-g)$ have the same level one energy surface, hence their dynamics on this energy surface are reparametrisation of each other, this is the Maupertuis principle. This remark is particularly relevant when $H$ is homogeneous in the fibers (which corresponds to Finsler metrics) or even fiberwise quadratic (which corresponds to Riemannian metrics). In these cases, perturbations by potentials of the Hamiltonian correspond, up to parametrisation, to conformal perturbations of the metric. One of the widely studied aspects is to understand to what extent the return map associated to a periodic orbit can be modified by a small perturbation. This kind of question depends strongly on the context in which they are posed. Some of the most studied contexts are, in increasing order of difficulty, perturbations of general vector fields, perturbations of Hamiltonian systems inside the class of Hamiltonian systems, perturbations of Riemannian metrics inside the class of Riemannian metrics, and Mañé perturbations of convex Hamiltonians. It is for example well known that each vector field can be perturbed to a vector field with only hyperbolic periodic orbits, this is part of the Kupka–Smale Theorem, see [ 5, 13] (the other part of the Kupka–Smale Theorem states that the stable and unstable manifolds intersect transversally; it has also been studied in the various settings mentioned above but will not be discussed here). In the context of Hamiltonian vector fields, the statement has to be weakened, but it remains true that each Hamiltonian can be perturbed to a Hamiltonian with only non-degenerate periodic orbits (including the iterated ones), see [ 11, 12]. The same result is true in the context of Riemannian metrics: every Riemannian metric can be perturbed to a Riemannian metric with only non-degenerate closed geodesics, this is the bumpy metric theorem, see [ 1, 2, 4]. The question was investigated only much more recently in the context of Mañé perturbations of convex Hamiltonians, see [ 9, 10]. It is proved in [ 10] that the same result holds: if $H$ is a convex Hamiltonian and $a$ is a regular value of $H$, then there exist arbitrarily small potentials $g$ such that all periodic orbits (including iterated ones) of $H+g$ at energy $a$ are non-degenerate. The proof given in [ 10] is actually rather similar to the ones given in papers on the perturbations of Riemannian metrics. In all these proofs, it is very useful to work in appropriate coordinates around an orbit segment. In the Riemannian case, one can use the so-called Fermi coordinates. In the Hamiltonian case, appropriate coordinates are considered in [ 10,Lemma 3.1] itself taken from [ 3, Lemma C.1]. However, as we shall detail below, the proof of this Lemma in [ 3], Appendix C, is incomplete, and the statement itself is actually wrong. Our goal in the present paper is to state and prove a corrected version of this normal form Lemma. Our proof is different from the one outlined in [ 3], Appendix C. In particular, it is purely Hamiltonian and does not rest on the results of [ 7] on Finsler metrics, as [ 3] did. Although our normal form is weaker than the one claimed in [ 10], it is actually sufficient to prove the main results of [ 6, 10], as we shall explain after the statement of Theorem 1, and probably also of the other works using [ 3, Lemma C.1].


2013 ◽  
Vol 756-759 ◽  
pp. 2528-2532
Author(s):  
Wen Jing Zhao ◽  
Yan Yan ◽  
Li Nan Shi ◽  
Bo Chao Qu

The-metric is an important class of Finsler metrics including Randers metric as the simplest class, and many people research the Randers metrics. In this paper, we study a new class of Finsler metrics in the form ,Whereis a Riemannian metric, is a 1-form. Bengling Li had introduced the projective flat of the-Metric F. We find another method which is about flag curvature to prove the projective flat conditions of this kind of-metric.


2008 ◽  
Vol 60 (2) ◽  
pp. 443-456 ◽  
Author(s):  
Z. Shen ◽  
G. Civi Yildirim

AbstractIn this paper, we find equations that characterize locally projectively flat Finsler metrics in the form , where is a Riemannian metric and is a 1-form. Then we completely determine the local structure of those with constant flag curvature.


1968 ◽  
Vol 32 ◽  
pp. 67-108 ◽  
Author(s):  
Akihiko Morimoto

The purpose of the present paper is to study the prolongations of G-structures on a manifold M to its tangent bundle T(M), G being a Lie subgroup of GL(n,R) with n = dim M. Recently, K. Yano and S. Kobayashi [9] studied the prolongations of tensor fields on M to T(M) and they proposed the following question: Is it possible to associate with each G-structure on M a naturally induced G-structure on T(M), where G′ is a certain subgroup of GL(2n,R)? In this paper we give an answer to this question and we shall show that the prolongations of some special tensor fields by Yano-Kobayashi — for instance, the prolongations of almost complex structures — are derived naturally by our prolongations of the classical G-structures. On the other hand, S. Sasaki [5] studied a prolongation of Riemannian metrics on M to a Riemannian metric on T(M), while the prolongation of a (positive definite) Riemannian metric due to Yano-Kobayashi is always pseudo-Riemannian on T(M) but never Riemannian. We shall clarify the circumstances for this difference and give the reason why the one is positive definite Riemannian and the other is not.


2007 ◽  
Vol 18 (07) ◽  
pp. 749-760 ◽  
Author(s):  
BENLING LI ◽  
ZHONGMIN SHEN

In this paper, we study a class of Finsler metrics defined by a Riemannian metric and a 1-form. We classify those projectively flat with constant flag curvature.


2018 ◽  
Vol 2018 (735) ◽  
pp. 143-173 ◽  
Author(s):  
Matias del Hoyo ◽  
Rui Loja Fernandes

AbstractWe introduce a notion of metric on a Lie groupoid, compatible with multiplication, and we study its properties. We show that many families of Lie groupoids admit such metrics, including the important class of proper Lie groupoids. The exponential map of these metrics allows us to establish a linearization theorem for Riemannian groupoids, obtaining both a simpler proof and a stronger version of the Weinstein–Zung linearization theorem for proper Lie groupoids. This new notion of metric has a simplicial nature which will be explored in future papers of this series.


2005 ◽  
Vol 16 (01) ◽  
pp. 53-85 ◽  
Author(s):  
YOSHIHIKO SUYAMA

We study generic conformally flat hypersurfaces in the Euclidean 4-space satisfying a certain condition on the conformal class of the first fundamental form. We first classify such hypersurfaces by determining all conformal-equivalence classes of generic conformally flat hypersurfaces satisfying the condition. Next, as an application of the classification theorem, we give some examples of flat Riemannian metrics which are not conformal to the first fundamental form of any generic conformally flat hypersurface. These flat Riemannian metrics seem to provide counter-examples to Hertrich–Jeromin's claim [3, 5].


2009 ◽  
Vol 24 (27) ◽  
pp. 4999-5006
Author(s):  
JOSÉ M. ISIDRO ◽  
J. L. G. SANTANDER ◽  
P. FERNÁNDEZ DE CÓRDOBA

We obtain Schrödinger quantum mechanics from Perelman's functional and from the Ricci-flow equations of a conformally flat Riemannian metric on a closed two-dimensional configuration space. We explore links with the recently discussed emergent quantum mechanics.


Sign in / Sign up

Export Citation Format

Share Document