scholarly journals Łojasiewicz-type inequalities with explicit exponents for the largest eigenvalue function of real symmetric polynomial matrices

2016 ◽  
Vol 27 (02) ◽  
pp. 1650012 ◽  
Author(s):  
Si Tiep Dinh ◽  
Tien Son Pham

Let [Formula: see text] be a real symmetric polynomial matrix of order [Formula: see text] and let [Formula: see text] be the largest eigenvalue function of the matrix [Formula: see text] We denote by [Formula: see text] the Clarke subdifferential of [Formula: see text] at [Formula: see text] In this paper, we first give the following nonsmooth version of Łojasiewicz gradient inequality for the function [Formula: see text] with an explicit exponent: For any [Formula: see text] there exist [Formula: see text] and [Formula: see text] such that we have for all [Formula: see text] [Formula: see text] where [Formula: see text] and [Formula: see text] is a function introduced by D’Acunto and Kurdyka: [Formula: see text] if [Formula: see text] and [Formula: see text] if [Formula: see text] Then we establish some local and global versions of Łojasiewicz inequalities which bound the distance function to the set [Formula: see text] by some exponents of the function [Formula: see text].

2019 ◽  
Vol 10 (01) ◽  
pp. 2150010
Author(s):  
Vesselin Drensky ◽  
Alan Edelman ◽  
Tierney Genoar ◽  
Raymond Kan ◽  
Plamen Koev

We present new expressions for the densities and distributions of the largest eigenvalue and the trace of a Beta–Wishart matrix. The series expansions for these expressions involve fewer terms than previously known results. For the trace, we also present a new algorithm that is linear in the size of the matrix and the degree of truncation, which is optimal.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Akbar Jahanbani ◽  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar

Let G be a simple graph of order n . The matrix ℒ G = D G − A G is called the Laplacian matrix of G , where D G and A G denote the diagonal matrix of vertex degrees and the adjacency matrix of G , respectively. Let l 1 G , l n − 1 G be the largest eigenvalue, the second smallest eigenvalue of ℒ G respectively, and λ 1 G be the largest eigenvalue of A G . In this paper, we will present sharp upper and lower bounds for l 1 G and l n − 1 G . Moreover, we investigate the relation between l 1 G and λ 1 G .


Author(s):  
И.В. Киреев

Предложена и обоснована экономичная версия метода сопряженных направлений для построения нетривиального решения однородной системы линейных алгебраических уравнений с вырожденной симметричной неотрицательно определенной квадратной матрицей. Предложено однопараметрическое семейство одношаговых нелинейных итерационных процессов вычисления собственного вектора, отвечающего наибольшему собственному значению симметричной неотрицательно определенной квадратной матрицы. Это семейство включает в себя степенной метод как частный случай. Доказана сходимость возникающих последовательностей векторов к собственному вектору, ассоциированному с наибольшим характеристическим числом матрицы. Предложена двухшаговая процедура ускорения сходимости итераций этих процессов, в основе которой лежит ортогонализация в подпространстве Крылова. Приведены результаты численных экспериментов. An efficient version of the conjugate direction method to find a nontrivial solution of a homogeneous system of linear algebraic equations with a singular symmetric nonnegative definite square matrix is proposed and substantiated. A one-parameter family of one-step nonlinear iterative processes to determine the eigenvector corresponding to the largest eigenvalue of a symmetric nonnegative definite square matrix is also proposed. This family includes the power method as a special case. The convergence of corresponding vector sequences to the eigenvector associated with the largest eigenvalue of the matrix is proved. A two-step procedure is formulated to accelerate the convergence of iterations for these processes. This procedure is based on the orthogonalization in Krylov subspaces. A number of numerial results are discussed.


Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2763-2771 ◽  
Author(s):  
Dalila Azzam-Laouir ◽  
Samira Melit

In this paper, we prove a theorem on the existence of solutions for a second order differential inclusion governed by the Clarke subdifferential of a Lipschitzian function and by a mixed semicontinuous perturbation.


Author(s):  
Jürgen Jost ◽  
Raffaella Mulas ◽  
Florentin Münch

AbstractWe offer a new method for proving that the maxima eigenvalue of the normalized graph Laplacian of a graph with n vertices is at least $$\frac{n+1}{n-1}$$ n + 1 n - 1 provided the graph is not complete and that equality is attained if and only if the complement graph is a single edge or a complete bipartite graph with both parts of size $$\frac{n-1}{2}$$ n - 1 2 . With the same method, we also prove a new lower bound to the largest eigenvalue in terms of the minimum vertex degree, provided this is at most $$\frac{n-1}{2}$$ n - 1 2 .


2021 ◽  
Vol 9 (1) ◽  
pp. 19-21
Author(s):  
Zoran Stanić

Abstract We derive an inequality that includes the largest eigenvalue of the adjacency matrix and walks of an arbitrary length of a signed graph. We also consider certain particular cases.


1972 ◽  
Vol 30 (3) ◽  
pp. 743-746 ◽  
Author(s):  
Edward F. Gocka

A matrix formula available for the calculation of complex chi-squares allows several computational variations, each of which requires fewer steps than the standard formula. However, neither the matrix formula nor the associated computational algorithms have been given adequate exposure in statistical texts for the behavioral sciences. This paper reintroduces the formula, expands the notation, and shows how several computational variations can be derived.


10.37236/169 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Yanqing Chen ◽  
Ligong Wang

The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the graph. In this paper, we investigate Laplacian spread of graphs, and prove that there exist exactly five types of tricyclic graphs with maximum Laplacian spread among all tricyclic graphs of fixed order.


Sign in / Sign up

Export Citation Format

Share Document