A COMPLETE CLASSIFICATION OF FINITE-DIMENSIONAL SIMPLE NOVIKOV ALGEBRAS OF CHARACTERISTIC p > 2

1997 ◽  
Vol 17 (4) ◽  
pp. 449-454
Author(s):  
Hongji Chen
2018 ◽  
Vol 2019 (15) ◽  
pp. 4822-4844 ◽  
Author(s):  
Natalia Iyudu ◽  
Agata Smoktunowicz

Abstract Potential algebras feature in the minimal model program and noncommutative resolution of singularities, and the important cases are when they are finite dimensional, or of linear growth. We develop techniques, involving Gröbner basis theory and generalized Golod–Shafarevich-type theorems for potential algebras, to determine finiteness conditions in terms of the potential. We consider two-generated potential algebras. Using Gröbner bases techniques and arguing in terms of associated truncated algebra we prove that they cannot have dimension smaller than 8. This answers a question of Wemyss [21], related to the geometric argument of Toda [17]. We derive from the improved version of the Golod–Shafarevich theorem, that if the potential has only terms of degree 5 or higher, then the potential algebra is infinite dimensional. We prove that potential algebra for any homogeneous potential of degree $n\geqslant 3$ is infinite dimensional. The proof includes a complete classification of all potentials of degree 3. Then we introduce a certain version of Koszul complex, and prove that in the class $\mathcal {P}_{n}$ of potential algebras with homogeneous potential of degree $n+1\geqslant 4$, the minimal Hilbert series is $H_{n}=\frac {1}{1-2t+2t^{n}-t^{n+1}}$, so they are all infinite dimensional. Moreover, growth could be polynomial (but nonlinear) for the potential of degree 4, and is always exponential for potential of degree starting from 5. For one particular type of potential we prove a conjecture by Wemyss, which relates the difference of dimensions of potential algebra and its abelianization with Gopakumar–Vafa invariants.


1982 ◽  
Vol 25 (1) ◽  
pp. 81-86 ◽  
Author(s):  
David G. Arrell

Let R be a ring with identity, let Ω be an infinite set and let M be the free R-module R(Ω). In [1] we investigated the problem of locating and classifying the normal subgroups of GL(Ω, R), the group of units of the endomorphism ring EndRM, where R was an arbitrary ring with identity. (This extended the work of [3] and [8] where it was necessary for R to satisfy certain finiteness conditions.) When R is a division ring, the complete classification of the normal subgroups of GL(Ω, R) is given in [9] and the corresponding results for a Hilbert space are given in [6] and [7]. The object of this paper is to extend the methods of [1] to yield a classification of the subnormal subgroups of GL(Ω, R) along the lines of that given by Wilson in [10] in the finite dimensional case.


2012 ◽  
Vol 2013 (682) ◽  
pp. 1-48
Author(s):  
Lidia Angeleri Hügel ◽  
Javier Sánchez

Abstract. We give a complete classification of the infinite dimensional tilting modules over a tame hereditary algebra R. We start our investigations by considering tilting modules of the form where is a union of tubes, and denotes the universal localization of R at in the sense of Schofield and Crawley-Boevey. Here is a direct sum of the Prüfer modules corresponding to the tubes in . Over the Kronecker algebra, large tilting modules are of this form in all but one case, the exception being the Lukas tilting module L whose tilting class consists of all modules without indecomposable preprojective summands. Over an arbitrary tame hereditary algebra, T can have finite dimensional summands, but the infinite dimensional part of T is still built up from universal localizations, Prüfer modules and (localizations of) the Lukas tilting module. We also recover the classification of the infinite dimensional cotilting R-modules due to Buan and Krause.


2001 ◽  
Vol 13 (07) ◽  
pp. 799-845 ◽  
Author(s):  
H.-D. DOEBNER ◽  
P. ŠŤOVÍČEK ◽  
J. TOLAR

This review paper is devoted to topological global aspects of quantal description. The treatment concentrates on quantizations of kinematical observables — generalized positions and momenta. A broad class of quantum kinematics is rigorously constructed for systems, the configuration space of which is either a homogeneous space of a Lie group or a connected smooth finite-dimensional manifold without boundary. The class also includes systems in an external gauge field for an Abelian or a compact gauge group. Conditions for equivalence and irreducibility of generalized quantum kinematics are investigated with the aim of classification of possible quantizations. Complete classification theorems are given in two special cases. It is attempted to motivate the global approach based on a generalization of imprimitivity systems called quantum Borel kinematics. These are classified by means of global invariants — quantum numbers of topological origin. Selected examples are presented which demonstrate the richness of applications of Borel quantization. The review aims to provide an introductory survey of the subject and to be sufficiently selfcontained as well, so that it can serve as a standard reference concerning Borel quantization for systems admitting localization on differentiable manifolds.


2005 ◽  
Vol 2005 (2) ◽  
pp. 225-262 ◽  
Author(s):  
N. Z. Iorgov ◽  
A. U. Klimyk

The aim of this paper is to give a complete classification of irreducible finite-dimensional representations of the nonstandardq-deformationU′q(son)(which does not coincide with the Drinfel'd-Jimbo quantum algebraUq(son)) of the universal enveloping algebraU(son(ℂ))of the Lie algebrason(ℂ)whenqis not a root of unity. These representations are exhausted by irreducible representations of the classical type and of the nonclassical type. The theorem on complete reducibility of finite-dimensional representations ofU′q(son)is proved.


1975 ◽  
Vol 27 (5) ◽  
pp. 1011-1021 ◽  
Author(s):  
Gordon Brown

Cartan subalgebras play a very important role in the classification of the finite-dimensional simple Lie algebras over an algebraically closed field of characteristic zero. It is well-known [5, 273] that any two Cartan subalgebras of such an algebra are conjugate, i.e. images of one another under some automorphism of the algebra. On the other hand, there exist finitedimensional simple Lie algebras over fields of finite characteristic p possessing non-conjugate Cartan subalgebras [2; 3; 4]. The simple Lie algebras discovered by Zassenhaus [6] also possess non-conjugate Cartan subalgebras, and we shall give a complete classification of Cartan subalgebras of these algebras in this paper.


2016 ◽  
Vol 102 (1) ◽  
pp. 108-121 ◽  
Author(s):  
KARIN ERDMANN

Assume that $A$ is a finite-dimensional algebra over some field, and assume that $A$ is weakly symmetric and indecomposable, with radical cube zero and radical square nonzero. We show that such an algebra of wild representation type does not have a nonprojective module $M$ whose ext-algebra is finite dimensional. This gives a complete classification of weakly symmetric indecomposable algebras which have a nonprojective module whose ext-algebra is finite dimensional. This shows in particular that existence of ext-finite nonprojective modules is not equivalent with the failure of the finite generation condition (Fg), which ensures that modules have support varieties.


Author(s):  
Leszek Hadasz ◽  
Błażej Ruba

AbstractWe give a complete classification of Airy structures for finite-dimensional simple Lie algebras over $${\mathbb {C}}$$ C , and to some extent also over $${\mathbb {R}}$$ R , up to isomorphisms and gauge transformations. The result is that the only algebras of this type which admit any Airy structures are $$\mathfrak {sl}_2$$ sl 2 , $$\mathfrak {sp}_4$$ sp 4 and $$\mathfrak {sp}_{10}$$ sp 10 . Among these, each admits exactly two non-equivalent Airy structures. Our methods apply directly also to semisimple Lie algebras. In this case it turns out that the number of non-equivalent Airy structures is countably infinite. We have derived a number of interesting properties of these Airy structures and constructed many examples. Techniques used to derive our results may be described, broadly speaking, as an application of representation theory in semiclassical analysis.


2020 ◽  
pp. 2050128
Author(s):  
Qingyun Wang

Let [Formula: see text] be an AF algebra, [Formula: see text] be a compact group. We consider inductive limit actions of the form [Formula: see text], where [Formula: see text] is an action on the finite-dimensional C*-algebra [Formula: see text] which fixes each matrix summand. We give a complete classification up to conjugacy of such actions using twisted equivariant K-theory.


Sign in / Sign up

Export Citation Format

Share Document