NUMERICAL MODELING OF ELECTROACOUSTIC LOGGING INCLUDING JOULE HEATING

2011 ◽  
Vol 22 (08) ◽  
pp. 805-823 ◽  
Author(s):  
BORIS D. PLYUSHCHENKOV ◽  
ANATOLY A. NIKITIN ◽  
VICTOR I. TURCHANINOV

It is well known that electromagnetic field excites acoustic wave in a porous elastic medium saturated with fluid electrolyte due to electrokinetic conversion effect. Pride's equations describing this process are written in isothermal approximation. Update of these equations, which allows to take influence of Joule heating on acoustic waves propagation into account, is proposed here. This update includes terms describing the initiation of additional acoustic waves excited by thermoelastic stresses and the heat conduction equation with right side defined by Joule heating. Results of numerical modeling of several problems of propagation of acoustic waves excited by an electric field source with and without consideration of Joule heating effect in their statements are presented. From these results, it follows that influence of Joule heating should be taken into account at the numerical simulation of electroacoustic logging and at the interpretation of its log data.

2006 ◽  
Vol 561 (1-2) ◽  
pp. 138-149 ◽  
Author(s):  
G.Y. Tang ◽  
C. Yang ◽  
H.Q. Gong ◽  
J.C. Chai ◽  
Y.C. Lam

2021 ◽  
Author(s):  
Zhengfang Li ◽  
Songlin He ◽  
Yuhang Zhang ◽  
Zhiguo An ◽  
Zhengyuan Gao ◽  
...  

Abstract Since the deformation region involves the interaction of electric-thermal-force coupling in electric hot incremental sheet forming, the numerical simulation of the forming process is unusually difficult. Currently, the thermal-force coupling method is adopted to simulate approximately the whole forming process, and the Joule heating effect is often ignored. Therefore, the numerical simulation of Joule heating effect is especially significant for the prediction accuracy of forming process. In this paper, a novel numerical simulation method, considering electric-thermal-force parameters, was proposed to instantly update the thermal-force condition of forming region. Meanwhile, the model of contact thermal conductance was established combining geometrical and electric-thermal parameters, and then a high-precision finite element model was obtained to predict the Joule heating effect of forming region. In addition to this, the effect of thermal superposition on forming temperature was further analyzed and a modified model of contact thermal conductance was established in electric hot incremental sheet forming.


Volume 3 ◽  
2004 ◽  
Author(s):  
Gongyue Tang ◽  
Chun Yang ◽  
Cheekiong Chai ◽  
Haiqing Gong

This study presents a numerical simulation of Joule heating effect on electroosmotic flow and mass species transport in microchannels, which has direct applications in the capillary electrophoresis based Biochip technology. The proposed model includes the Poisson-Boltzmann equation, the modified Navier-Stokes equations, the conjugate energy equation, and the mass species transport equation. The numerical predictions show that the time development for both the electroosmotic flow field and the Joule heating induced temperature field are less than 1 second. The Joule heating induced temperature field is strongly dependent on channel size, electrolyte concentration, and applied electric field strength. The simulations reveal that the presence of Joule heating can result in significantly different characteristics of the electroosmotic flow and electrokinetic mass transport in microchannels.


Sign in / Sign up

Export Citation Format

Share Document