University ranking based on faculty hiring network with minimum weighted violation rankings

2019 ◽  
Vol 30 (07) ◽  
pp. 1940017
Author(s):  
Liqian Lang ◽  
Yan Wang ◽  
Qinghua Chen ◽  
Tao Zheng

University ranking arouses widespread interest among the society and the scientific community. It can cause resources to be allocated to the entity which has a higher ranking to make tremendous uneven distribution of resources such as funds, faculty, students and so on. Every year various controversial university rankings are issued by different institutions or individuals. However, they have to deal with a huge amount of data and cumbersome computing in their research. Furthermore, during the process of calculation, some key indicators are unreliable, subjective, and difficult to obtain or compute so that their results are easily questioned. An accurate and objective university ranking is important and necessary, but it still remains to be solved. In 2015, Clauset et al. creatively studied university rankings based on faculty hiring network with graduation-employment flow data. They used the minimum violation ranking (MVR) method to get a university ranking which has a high correlation with U.S. News & World Report (USN) and National Research Council (NRC) Ranking, implying a strong consistency between them. This method costs less and is also objective. Inspired by this thought, this paper proposed a new ranking algorithm with minimum weighted violation rankings derived through maximum likelihood estimation. This assumption is more reasonable, and the results are commendably consistent with the rankings of renowned agencies. This more general method is more flexible than non-weighted calculation. More importantly, this work revealed the essential mechanism of MVR by deriving maximum likelihood.

Methodology ◽  
2005 ◽  
Vol 1 (2) ◽  
pp. 81-85 ◽  
Author(s):  
Stefan C. Schmukle ◽  
Jochen Hardt

Abstract. Incremental fit indices (IFIs) are regularly used when assessing the fit of structural equation models. IFIs are based on the comparison of the fit of a target model with that of a null model. For maximum-likelihood estimation, IFIs are usually computed by using the χ2 statistics of the maximum-likelihood fitting function (ML-χ2). However, LISREL recently changed the computation of IFIs. Since version 8.52, IFIs reported by LISREL are based on the χ2 statistics of the reweighted least squares fitting function (RLS-χ2). Although both functions lead to the same maximum-likelihood parameter estimates, the two χ2 statistics reach different values. Because these differences are especially large for null models, IFIs are affected in particular. Consequently, RLS-χ2 based IFIs in combination with conventional cut-off values explored for ML-χ2 based IFIs may lead to a wrong acceptance of models. We demonstrate this point by a confirmatory factor analysis in a sample of 2449 subjects.


Author(s):  
Anggis Sagitarisman ◽  
Aceng Komarudin Mutaqin

AbstractCar manufacturers in Indonesia need to determine reasonable warranty costs that do not burden companies or consumers. Several statistical approaches have been developed to analyze warranty costs. One of them is the Gertsbakh-Kordonsky method which reduces the two-dimensional warranty problem to one dimensional. In this research, we apply the Gertsbakh-Kordonsky method to estimate the warranty cost for car type A in XYZ company. The one-dimensional data will be tested using the Kolmogorov-Smirnov to determine its distribution and the parameter of distribution will be estimated using the maximum likelihood method. There are three approaches to estimate the parameter of the distribution. The difference between these three approaches is in the calculation of mileage for units that do not claim within the warranty period. In the application, we use claim data for the car type A. The data exploration indicates the failure of car type A is mostly due to the age of the vehicle. The Kolmogorov-Smirnov shows that the most appropriate distribution for the claim data is the three-parameter Weibull. Meanwhile, the estimated using the Gertsbakh-Kordonsky method shows that the warranty costs for car type A are around 3.54% from the selling price of this car unit without warranty i.e. around Rp. 4,248,000 per unit.Keywords: warranty costs; the Gertsbakh-Kordonsky method; maximum likelihood estimation; Kolmogorov-Smirnov test.                                   AbstrakPerusahaan produsen mobil di Indonesia perlu menentukan biaya garansi yang bersifat wajar tidak memberatkan perusahaan maupun konsumen. Beberapa pendekatan statistik telah dikembangkan untuk menganalisis biaya garansi. Salah satunya adalah metode Gertsbakh-Kordonsky yang mereduksi masalah garansi dua dimensi menjadi satu dimensi. Pada penelitian ini, metode Gertsbakh-Kordonsky akan digunakan untuk mengestimasi biaya garansi untuk mobil tipe A pada perusahaan XYZ. Data satu dimensi hasil reduksi diuji kecocokan distribusinya menggunakan uji kecocokan Kolmogorov-Smirnov dan taksiran parameter distribusinya menggunakan metode penaksir kemungkinan maksimum. Ada tiga pendekatan yang digunakan untuk menaksir parameter distribusi. Perbedaan dari ketiga pendekatan tersebut terletak pada perhitungan jarak tempuh untuk unit yang tidak melakukan klaim dalam periode garansi. Sebagai bahan aplikasi, kami menggunakan data klaim unit mobil tipe A. Hasil eksplorasi data menunjukkan bahwa kegagalan mobil tipe A lebih banyak disebabkan karena faktor usia kendaraan. Hasil uji kecocokan distribusi untuk data hasil reduksi menunjukkan bahwa distribusi yang cocok adalah distribusi Weibull 3-parameter. Sementara itu, hasil perhitungan taksiran biaya garansi menunjukan bahwa taksiran biaya garansi untuk unit mobil tipe A sekitar 3,54% dari harga jual unit mobil tipe A tanpa garansi, atau sekitar Rp. 4.248.000,- per unit.Kata Kunci: biaya garansi; metode Gertsbakh-Kordonsky; penaksiran kemungkinan maksimum; uji Kolmogorov-Smirnov.


Sign in / Sign up

Export Citation Format

Share Document