Finite Size Scaling in the tt'-Hubbard Model and in BCS-Reduced Hubbard Models

1998 ◽  
Vol 09 (07) ◽  
pp. 943-985 ◽  
Author(s):  
W. Fettes ◽  
I. Morgenstern

With the projector quantum Monte Carlo algorithm and the stochastic diagonalization it is possible to calculate the ground state of the Hubbard model for small finite clusters. Nevertheless the usual finite size scaling of the Hubbard model has problems of deducing the behavior of the infinite system correctly from the numerical data of small system sizes. Therefore we study the finite size scaling of the superconducting correlation functions in superconducting BCS-reduced Hubbard models to analyze the finite size behavior in small finite clusters. The ground state of the BCS-reduced Hubbard models is calculated with the stochastic diagonalization without any approximations. As result of these analyses we propose a new finite size scaling ansatz for the Hubbard model, which is able describe the finite size effects in a consistent way taking the corrections to scaling into account, which are dominant for weak interaction strength and small clusters. With this new finite size scaling ansatz it is possible to give evidence for superconductivity for all interaction strengths for both the attractive tt'-Hubbard model (with s-wave symmetry) and the repulsive tt'-Hubbard model (with dx2-y2-wave symmetry).

1994 ◽  
Vol 08 (06) ◽  
pp. 707-725
Author(s):  
S. V. MESHKOV ◽  
J. C. ANGLÈS D'AURIAC

Using an original Quantum Monte Carlo algorithm, we study the thermodynamical properties of a single hole in the two-dimensional infinite-U Hubbard model at finite temperature. We investigate the energy and the spin correlators as a function of an external orbital magnetic field. This field is found to destroy the Nagaoka ferromagnetism and to induce chirality in the spin background. The applied field is partially screened by a fictitious magnetic field coming from the chirality. Our algorithm allows us to reach a temperature low enough to discuss the ground state properties of the model.


2012 ◽  
Vol 26 (04) ◽  
pp. 1250014 ◽  
Author(s):  
SHI-JIAN GU ◽  
JUNPENG CAO ◽  
SHU CHEN ◽  
HAI-QING LIN

The finite size scaling behavior of superfluid–insulator transition in the one-dimensional Bose–Hubbard model is studied. It is shown that the superfluid density of the system with finite size has a maximum at a certain interaction Um and the derivative of superfluid density has a minimum at a certain interaction Ud. The critical point Uc can be quantified by the scaling analysis of either Um or Ud. The transition point Um tends to the critical point Uc from the region of U < Uc, while the Ud tends to the Uc from the region of U > Uc. The transition points Um and Ud satisfy different finite size scaling laws and have the different critical exponents. The divergence speed of the superfluid density is much smaller than that of its derivative at the critical point.


Sign in / Sign up

Export Citation Format

Share Document