INFLUENCE OF BOUNDARY CONDITIONS ON THE FRACTION OF SPANNING CLUSTERS

1999 ◽  
Vol 10 (01) ◽  
pp. 183-188 ◽  
Author(s):  
MATT FORD ◽  
D. L. HUNTER ◽  
NAEEM JAN

We use the Hoshen–Kopelman algorithm with the Nakanashi method of recycling redundant labels to measure the fraction of spanning configurations, R(pc), at and near pc, for random site percolation in two and three dimensions with different boundary conditions. For the square and cubic lattices we find that R(pc) is 0.50 and 0.28 for free edges and 0.64 (2-d) and 0.56 (3-d) for both helical and periodic boundary conditions. The error bars are of the order of ±0.01 for these results.

2000 ◽  
Vol 653 ◽  
Author(s):  
Vasily V. Bulatov ◽  
Moon Rhee ◽  
Wei Cai

AbstractThis article presents an implementation of periodic boundary conditions (PBC) for Dislocation Dynamics (DD) simulations in three dimensions (3D). We discuss fundamental aspects of PBC development, including preservation of translational invariance and line connectivity, the choice of initial configurations compatible with PBC and a consistent treatment of image stress. On the practical side, our approach reduces to manageable proportions the computational burden of updating the long-range elastic interactions among dislocation segments. The timing data confirms feasibility and practicality of PBC for large-scale DD simulations in 3D.


1998 ◽  
Vol 09 (04) ◽  
pp. 643-647 ◽  
Author(s):  
Muktish Acharyya ◽  
Dietrich Stauffer

The fractions of samples spanning a lattice at its percolation threshold are found by computer simulation of random site-percolation in two- and three-dimensional hypercubic lattices using different boundary conditions. As a byproduct we find pc=0.311605(5) in the cubic lattice.


2019 ◽  
Author(s):  
Pier Paolo Poier ◽  
Louis Lagardere ◽  
Jean-Philip Piquemal ◽  
Frank Jensen

<div> <div> <div> <p>We extend the framework for polarizable force fields to include the case where the electrostatic multipoles are not determined by a variational minimization of the electrostatic energy. Such models formally require that the polarization response is calculated for all possible geometrical perturbations in order to obtain the energy gradient required for performing molecular dynamics simulations. </p><div> <div> <div> <p>By making use of a Lagrange formalism, however, this computational demanding task can be re- placed by solving a single equation similar to that for determining the electrostatic variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p><div><div><div> </div> </div> </div> <p> </p><div> <div> <div> <p>variables themselves. Using the recently proposed bond capacity model that describes molecular polarization at the charge-only level, we show that the energy gradient for non-variational energy models with periodic boundary conditions can be calculated with a computational effort similar to that for variational polarization models. The possibility of separating the equation for calculating the electrostatic variables from the energy expression depending on these variables without a large computational penalty provides flexibility in the design of new force fields. </p> </div> </div> </div> </div> </div> </div> </div> </div> </div>


Author(s):  
Robert Stegliński

AbstractIn this work, we establish optimal Lyapunov-type inequalities for the second-order difference equation with p-Laplacian $$\begin{aligned} \Delta (\left| \Delta u(k-1)\right| ^{p-2}\Delta u(k-1))+a(k)\left| u(k)\right| ^{p-2}u(k)=0 \end{aligned}$$ Δ ( Δ u ( k - 1 ) p - 2 Δ u ( k - 1 ) ) + a ( k ) u ( k ) p - 2 u ( k ) = 0 with Dirichlet, Neumann, mixed, periodic and anti-periodic boundary conditions.


Sign in / Sign up

Export Citation Format

Share Document