The Dynamical Casimir Effect and Energetic Sources for Gamma Ray Bursts

2003 ◽  
Vol 18 (19) ◽  
pp. 1325-1330 ◽  
Author(s):  
She-Sheng Xue

On the analogy of the Casimir effect, we present an effect of quantum-field fluctuations, attributed to gravitational field coupling to the zero-point energy of virtual particles in the vacuum. In the process of black hole's formation, such an effect could cause tremendous energy release, possibly describing a scenario of energetic sources for observed gamma ray bursts.

2017 ◽  
Vol 26 (12) ◽  
pp. 1743031 ◽  
Author(s):  
Nader A. Inan

The response of a superconductor to a gravitational wave is shown to obey a London-like constituent equation. The Cooper pairs are described by the Ginzburg–Landau free energy density embedded in curved spacetime. The lattice ions are modeled by quantum harmonic oscillators characterized by quasi-energy eigenvalues. This formulation is shown to predict a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is modulated by the gravitational wave. It is also shown that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a “charge separation effect” which can be used to detect the passage of a gravitational wave.


2008 ◽  
Vol 63 (9) ◽  
pp. 571-574
Author(s):  
Frédéric Schuller

We tackle the very fundamental problem of zero-point energy divergence in the context of the Casimir effect. We calculate the Casimir force due to field fluctuations by using standard cavity radiation modes. The validity of convergence generation by means of an exponential energy cut-off factor is discussed in detail.


2020 ◽  
Vol 51 (4) ◽  
pp. 18-20
Author(s):  
Gheorghe Sorin Paraoanu ◽  
Göran Johansson

Modern quantum field theory has offered us a very intriguing picture of empty space. The vacuum state is no longer an inert, motionless state. We are instead dealing with an entity teeming with fluctuations that continuously produce virtual particles popping in and out of existence. The dynamical Casimir effect is a paradigmatic phenomenon, whereby these particles are converted into real particles (photons) by changing the boundary conditions of the field. It was predicted 50 years ago by Gerald T. Moore and it took more than 40 years until the first experimental verification.


2002 ◽  
Vol 11 (10) ◽  
pp. 1567-1572 ◽  
Author(s):  
FABRIZIO PINTO

In the typical Casimir effect, the boundaries of two semi-infinite media exert a force upon one another across a vacuum gap separating them. In this paper, I argue that a static gravitational field can be regarded as a "soft" boundary which interacts with a test object of finite size through the electromagnetic zero-point-energy field. Therefore, a pressure exists upon a single slab placed in a gravitational field and surrounded by a vacuum. Interestingly, this extremely small Casimir pressure of the gravitational field may cause relative displacements in ground-based sensing microstructures larger than those from astrophysical gravitational waves in macroscopic antennas.


2006 ◽  
Vol 84 (10) ◽  
pp. 861-877 ◽  
Author(s):  
T Hirayama ◽  
B Holdom

We study classical field theories in a background field configuration where all modes of the theory are excited, matching the zero-point energy spectrum of quantum field theory. Our construction involves elements of a theory of classical electrodynamics by Wheeler–Feynman and the theory of stochastic electrodynamics of Boyer. The nonperturbative effects of interactions in these theories can be very efficiently studied on the lattice. In [Formula: see text] theory in 1 + 1 dimensions, we find results, in particular, for mass renormalization and the critical coupling for symmetry breaking that are in agreement with their quantum counterparts. We then study the perturbative expansion of the n-point Green's functions and find a loop expansion very similar to that of quantum field theory. When compared to the usual Feynman rules, we find some differences associated with particular combinations of internal lines going on-shell simultaneously. PACS Nos.: 03.70.+k, 03.50.–z, 11.15.Tk


2003 ◽  
Vol 71 (1) ◽  
pp. 93-93
Author(s):  
Kimball A. Milton ◽  
S. K. Lamoreaux

2019 ◽  
Vol 18 (01) ◽  
pp. 1930001 ◽  
Author(s):  
Lino Reggiani ◽  
Eleonora Alfinito

The fluctuation dissipation theorem (FDT) is the basis for a microscopic description of the interaction between electromagnetic radiation and matter. By assuming the electromagnetic radiation in thermal equilibrium and the interaction in the linear-response regime, the theorem interrelates the macroscopic spontaneous fluctuations of an observable with the kinetic coefficients that are responsible for energy dissipation in the linear response to an applied perturbation. In the quantum form provided by Callen and Welton in their pioneering paper of 1951 for the case of conductors [H. B. Callen and T. A. Welton, Irreversibility and generalized noise, Phys. Rev. 83 (1951) 34], electrical noise in terms of the spectral density of voltage fluctuations, [Formula: see text], detected at the terminals of a conductor was related to the real part of its impedance, [Formula: see text], by the simple relation [Formula: see text] where [Formula: see text] is the Boltzmann constant, [Formula: see text] is the absolute temperature, [Formula: see text] is the reduced Planck constant and [Formula: see text] is the angular frequency. The drawbacks of this relation concern with: (i) the appearance of a zero-point contribution which implies a divergence of the spectrum at increasing frequencies; (ii) the lack of detailing the appropriate equivalent-circuit of the impedance, (iii) the neglect of the Casimir effect associated with the quantum interaction between zero-point energy and boundaries of the considered physical system; (iv) the lack of identification of the microscopic noise sources beyond the temperature model. These drawbacks do not allow to validate the relation with experiments, apart from the limiting conditions when [Formula: see text]. By revisiting the FDT within a brief historical survey of its formulation, since the announcement of Stefan–Boltzmann law dated in the period 1879–1884, we shed new light on the existing drawbacks by providing further properties of the theorem with particular attention to problems related with the electrical noise of a two-terminals sample under equilibrium conditions. Accordingly, among others, we will discuss the duality and reciprocity properties of the theorem, the role played by different statistical ensembles, its applications to the ballistic transport-regime, to the case of vacuum and to the case of a photon gas.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
A. Ferrero ◽  
L. Hanlon ◽  
R. Felletti ◽  
J. French ◽  
G. Melady ◽  
...  

The Watcher robotic telescope was developed primarily to perform rapid optical follow-up observations of Gamma-Ray Bursts (GRBs). Secondary scientific goals include blazar monitoring and variable star studies. An automated photometry pipeline to rapidly analyse data from Watcher has been implemented. Details of the procedures to get image zero-point, source instrumental measurement, and limiting magnitude are presented. Sources of uncertainty are assessed and the performance of the pipeline is tested by comparison with a number of catalogue sources.


Sign in / Sign up

Export Citation Format

Share Document