CASIMIR FORCE BETWEEN A GRAVITATIONAL FIELD AND A FINITE OBJECT

2002 ◽  
Vol 11 (10) ◽  
pp. 1567-1572 ◽  
Author(s):  
FABRIZIO PINTO

In the typical Casimir effect, the boundaries of two semi-infinite media exert a force upon one another across a vacuum gap separating them. In this paper, I argue that a static gravitational field can be regarded as a "soft" boundary which interacts with a test object of finite size through the electromagnetic zero-point-energy field. Therefore, a pressure exists upon a single slab placed in a gravitational field and surrounded by a vacuum. Interestingly, this extremely small Casimir pressure of the gravitational field may cause relative displacements in ground-based sensing microstructures larger than those from astrophysical gravitational waves in macroscopic antennas.

2008 ◽  
Vol 63 (9) ◽  
pp. 571-574
Author(s):  
Frédéric Schuller

We tackle the very fundamental problem of zero-point energy divergence in the context of the Casimir effect. We calculate the Casimir force due to field fluctuations by using standard cavity radiation modes. The validity of convergence generation by means of an exponential energy cut-off factor is discussed in detail.


2017 ◽  
Vol 26 (12) ◽  
pp. 1743031 ◽  
Author(s):  
Nader A. Inan

The response of a superconductor to a gravitational wave is shown to obey a London-like constituent equation. The Cooper pairs are described by the Ginzburg–Landau free energy density embedded in curved spacetime. The lattice ions are modeled by quantum harmonic oscillators characterized by quasi-energy eigenvalues. This formulation is shown to predict a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is modulated by the gravitational wave. It is also shown that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a “charge separation effect” which can be used to detect the passage of a gravitational wave.


2003 ◽  
Vol 71 (1) ◽  
pp. 93-93
Author(s):  
Kimball A. Milton ◽  
S. K. Lamoreaux

2019 ◽  
Vol 18 (01) ◽  
pp. 1930001 ◽  
Author(s):  
Lino Reggiani ◽  
Eleonora Alfinito

The fluctuation dissipation theorem (FDT) is the basis for a microscopic description of the interaction between electromagnetic radiation and matter. By assuming the electromagnetic radiation in thermal equilibrium and the interaction in the linear-response regime, the theorem interrelates the macroscopic spontaneous fluctuations of an observable with the kinetic coefficients that are responsible for energy dissipation in the linear response to an applied perturbation. In the quantum form provided by Callen and Welton in their pioneering paper of 1951 for the case of conductors [H. B. Callen and T. A. Welton, Irreversibility and generalized noise, Phys. Rev. 83 (1951) 34], electrical noise in terms of the spectral density of voltage fluctuations, [Formula: see text], detected at the terminals of a conductor was related to the real part of its impedance, [Formula: see text], by the simple relation [Formula: see text] where [Formula: see text] is the Boltzmann constant, [Formula: see text] is the absolute temperature, [Formula: see text] is the reduced Planck constant and [Formula: see text] is the angular frequency. The drawbacks of this relation concern with: (i) the appearance of a zero-point contribution which implies a divergence of the spectrum at increasing frequencies; (ii) the lack of detailing the appropriate equivalent-circuit of the impedance, (iii) the neglect of the Casimir effect associated with the quantum interaction between zero-point energy and boundaries of the considered physical system; (iv) the lack of identification of the microscopic noise sources beyond the temperature model. These drawbacks do not allow to validate the relation with experiments, apart from the limiting conditions when [Formula: see text]. By revisiting the FDT within a brief historical survey of its formulation, since the announcement of Stefan–Boltzmann law dated in the period 1879–1884, we shed new light on the existing drawbacks by providing further properties of the theorem with particular attention to problems related with the electrical noise of a two-terminals sample under equilibrium conditions. Accordingly, among others, we will discuss the duality and reciprocity properties of the theorem, the role played by different statistical ensembles, its applications to the ballistic transport-regime, to the case of vacuum and to the case of a photon gas.


2017 ◽  
Vol 32 (40) ◽  
pp. 1750217 ◽  
Author(s):  
Siddhartha Sen ◽  
Kumar S. Gupta

Spectral line widths, the Lamb shift and the Casimir effect are generally accepted to be observable consequences of the zero-point electromagnetic (ZPEM) fields. A new class of observable consequences of ZPEM field at the mesoscopic scale were recently proposed and observed. Here, we extend this class of observable effects and predict that mesoscopic water layers should have a high value for its solid–liquid phase transition temperature, as illustrated by water inside a single-walled carbon nanotube (CNT). For this case, our analysis predicts that the phase transition temperature scales inversely with the square of the effective radius available for the water flow within the CNT.


Author(s):  
Farbod Khoshnoud ◽  
Houman Owhadi ◽  
Clarence W. de Silva

Stochastic simulation of a Casimir Oscillator is presented in this paper. This oscillator is composed of a flat boundary of semiconducting oscillator parallel to a fixed plate separated by vacuum. In this system the oscillating surface is attracted to the fixed plate by the Casimir effect, due to quantum fluctuations in the zero point electromagnetic field. Motion of the oscillating boundary is opposed by a spring. The stored potential energy in the spring is converted into kinetic energy when the spring force exceeds the Casimir force, which generates an oscillatory motion of the moving plate. Casimir Oscillators are used as micro-mechanical switches, sensors and actuators. In the present paper, a stochastic simulation of a Casimir oscillator is presented for the first time. In this simulation, Stochastic Variational Integrators using a Langevin equation, which describes Brownian motion, is considered. Formulations for Symplectic Euler, Constrained Symplectic Euler, Stormer-Verlet and RATTLE integrators are obtained and the Symplectic Euler case is solved numerically. When the moving parts in a micro/nano system travel in the vicinity of 10 nanometers to 1 micrometer range relative to other parts of the system, the Casimir phenomenon is in effect and should be considered in analysis and design of such system. The simulation in this paper considers modeling such uncertainties as friction, effect of surface roughness on the Casimir force, and change in environmental conditions such as ambient temperature. In this manner the paper explores a realistic model of the Casimir Oscillator. Furthermore, the presented study of this system provides a deeper understanding of the nature of the Casimir force.


2017 ◽  
Vol 16 (04) ◽  
pp. 1771002 ◽  
Author(s):  
L. Reggiani ◽  
E. Alfinito

The role played by zero-point contribution in black-body radiation spectrum is investigated in connection with the presence of Casimir force. We assert that once mechanical stability for the physical system is established, there is no further role for zero-point contribution to the spectrum in full agreement with experimental evidence. As a direct consequence, Johnson–Nyquist noise in dissipative conductors, should be interpreted just in terms of thermal fluctuations only, thus neglecting quantum fluctuations predicted by [H. Callen and T. Welton, Irreversibility and generalized noise, Phys. Rev. 83 (1951) 34]. Casimir force between opposite metallic plates can be independently measured by its equilibration through application of a mechanical force and measuring it at a mechanical equilibrium.


2006 ◽  
Vol 15 (12) ◽  
pp. 1987-2010 ◽  
Author(s):  
G. E. VOLOVIK

We discuss the main myths related to the vacuum energy and cosmological constant, such as: "unbearable lightness of space–time"; the dominating contribution of zero-point energy of quantum fields to the vacuum energy; non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on the overall shift of energy; the absolute value of energy only has significance for gravity; the vacuum energy depends on the vacuum content; cosmological constant changes after the phase transition; zero-point energy of the vacuum between the plates in Casimir effect must gravitate, that is why the zero-point energy in the vacuum outside the plates must also gravitate; etc. All these and some other conjectures appear to be wrong when one considers the thermodynamics of the ground state of the quantum many-body system, which mimics macroscopic thermodynamics of quantum vacuum. In particular, in spite of the ultraviolet divergence of the zero-point energy, the natural value of the vacuum energy is comparable with the observed dark energy. That is why the vacuum energy is the plausible candidate for the dark energy.


2017 ◽  
Vol 95 (8) ◽  
pp. 767-769 ◽  
Author(s):  
Tapan Das

This paper presents a mathematical proposition based on zero point energy of the creation of singularity in the current Hot Bing Bang theory of the origin of the universe. The observable universe we live in and can see is finite and is defined by the speed of light. The entire universe is infinite and the observable universe is part of it. Zero point energy exists in the entire universe and at all frequencies up to the Planck frequency. Zero point energy was calculated by Planck. The Casimir effect, predicted by Hendrick Casimir, is caused by zero point energy and has been experimentally proven by S. Lamoreux and U. Mohideen. The author has mathematically calculated that the zero point energy waves up to Planck frequency can combine to create an energy source of colossal amount similar to the singularity of Hot Big Bang theory.


Sign in / Sign up

Export Citation Format

Share Document