CIRCULAR ORBITS AROUND SCHWARZSCHILD–AdS SPACETIME

2004 ◽  
Vol 19 (36) ◽  
pp. 2683-2695 ◽  
Author(s):  
A. M. DE M. CARVALHO ◽  
CLAUDIO FURTADO ◽  
FERNANDO MORAES

In this paper we discuss parallel transport of vectors and spinors around circular orbits in Schwarzschild–AdS spacetime. We study the global properties of this spacetime via loop variables or holonomy. A set of paths in this background is considered. We demonstrate that for some special radii there appears the so-called quantized band structure of holonomy invariance. This analysis is also extended to parallel transport of a spinor in this spacetime.

2004 ◽  
Vol 13 (09) ◽  
pp. 1771-1803 ◽  
Author(s):  
DONATO BINI ◽  
CHRISTIAN CHERUBINI ◽  
GIANLUCA CRUCIANI ◽  
ROBERT T. JANTZEN

Parallel transport along circular orbits in orthogonally transitive stationary axisymmetric spacetimes is described explicitly relative to Lie transport in terms of the electric and magnetic parts of the induced connection. The influence of both the gravito-electromagnetic fields associated with the zero angular momentum observers and of the Frenet–Serret parameters of these orbits as a function of their angular velocity is seen on the behavior of parallel transport through its representation as a parameter-dependent Lorentz transformation between these two inner-product preserving transports which is generated by the induced connection. This extends the analysis of parallel transport in the equatorial plane of the Kerr spacetime to the entire spacetime outside the black hole horizon, and helps give an intuitive picture of how competing "central attraction forces" and centripetal accelerations contribute with gravitomagnetic effects to explain the behavior of the 4-acceleration of circular orbits in that spacetime.


2021 ◽  
pp. 189-212
Author(s):  
Andrew M. Steane

The mathematics of Riemannian curvature is presented. The Riemann curvature tensor and its role in parallel transport, in the metric, and in geodesic deviation are expounded at length. We begin by defining the curvature tensor and the torsion tensor by relating them to covariant derivatives. Then the local metric is obtained up to second order in terms of Minkowski metric and curvature tensor. Geometric issues such as the closure or non-closure of parallelograms are discussed. Next, the relation between curvature and parallel transport around a loop is derived. Then we proceed to geodesic deviation. The influence of global properties of the manifold on parallel transport is briefly expounded. The Lie derivative is then defined, and isometries of spacetime are discussed. Killing’s equation and properties of Killing vectors are obtained. Finally, the Weyl tensor (conformal tensor) is introduced.


2021 ◽  
Vol 81 (10) ◽  
Author(s):  
Yong Song

AbstractIn this paper, we studied the evolutions of the innermost stable circular orbits (ISCOs) in dynamical spacetimes. At first, we reviewed the method to obtain the ISCO in Schwarzschild spacetime by varying its conserved orbital angular momentum. Then, we demonstrated this method is equivalent to the effective potential method in general static and stationary spacetimes. Unlike the effective potential method, which depends on the presence of the conserved orbital energy, this method requires the existence of conserved orbital angular momentum in spacetime. So it can be easily generalized to the dynamical spacetimes where there exists conserved orbital angular momentum. From this generalization, we studied the evolutions of the ISCOs in Vaidya spacetime, Vaidya-AdS spacetime and the slow rotation limit of Kerr–Vaidya spacetime. The results given by these examples are all reasonable and can be compared with the evolutions of the photon spheres in dynamical spacetimes.


Physica ◽  
1954 ◽  
Vol 3 (7-12) ◽  
pp. 967-970
Author(s):  
D JENKINS

1976 ◽  
Vol 37 (2) ◽  
pp. 149-158 ◽  
Author(s):  
A.K. Bhattacharjee ◽  
B. Caroli ◽  
D. Saint-James
Keyword(s):  

1972 ◽  
Vol 33 (C3) ◽  
pp. C3-21-C3-25 ◽  
Author(s):  
F. BASSANI

Sign in / Sign up

Export Citation Format

Share Document