scholarly journals UNIFIED FIRST LAW AND THERMODYNAMICS OF DYNAMICAL BLACK HOLE IN n-DIMENSIONAL VAIDYA SPACETIME

2008 ◽  
Vol 23 (38) ◽  
pp. 3265-3270 ◽  
Author(s):  
JI-RONG REN ◽  
RAN LI

As a simple but important example of dynamical black hole, we analyze the dynamical black hole in n-dimensional Vaidya spacetime in detail. We investigated the thermodynamics of field equation in n-dimensional Vaidya spacetime. The unified first law was derived in terms of the methods proposed by Hayward. The first law of dynamical black hole was obtained by projecting the unified first law along the trapping horizon. The second law of dynamical black hole is also discussed.

2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong-Wen Feng ◽  
Shu-Zheng Yang

The entropic force attracts a lot of interest for its multifunctional properties. For instance, Einstein’s field equation, Newton’s law of gravitation, and the Friedmann equation can be derived from the entropic force. In this paper, utilizing a new kind of rainbow gravity model that was proposed by Magueijo and Smolin, we explore the quantum gravity corrections to the entropic force. First, we derive the modified thermodynamics of a rainbow black hole via its surface gravity. Then, according to Verlinde’s theory, the quantum corrections to the entropic force are obtained. The result shows that the modified entropic force is related not only to the properties of the black hole but also to the Planck length lp and the rainbow parameter γ. Furthermore, based on the rainbow gravity corrected entropic force, the modified Einstein field equation and the modified Friedmann equation are also derived.


2007 ◽  
Vol 22 (24) ◽  
pp. 4451-4465 ◽  
Author(s):  
MOLIN LIU ◽  
HONGYA LIU ◽  
CHUNXIAO WANG ◽  
YONGLI PING

The Nariai black hole, whose two horizons are lying close to each other, is an extreme and important case in the research of black hole. In this paper we study the evolution of a massless scalar field scattered around in 5D Schwarzschild–de Sitter black string space. Using the method shown by Brevik and Simonsen (2001) we solve the scalar field equation as a boundary value problem, where real boundary condition is employed. Then with convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients (R, T) are obtained. At last, we also compare the coefficients with the usual 4D counterpart.


2012 ◽  
Vol 21 (07) ◽  
pp. 1250065 ◽  
Author(s):  
MUBASHER JAMIL ◽  
D. MOMENI ◽  
KAZUHARU BAMBA ◽  
RATBAY MYRZAKULOV

Motivated by some earlier works [G. Izquierdo and D. Pavon, Phys. Lett. B 639 (2006) 1; H. M. Sadjadi, Phys. Lett. B 645 (2007) 108.] dealing with the study of generalized second law (GSL) of thermodynamics for a system comprising of a Schwarzschild black hole accreting a test nonself-gravitating fluid namely phantom energy in FRW universe, we extend them when the entropy of horizons of black hole and the cosmological undergo quantum corrections. Two types of such corrections are relevant here including logarithmic and power-law, while both are motivated from different theoretical backgrounds. We obtain general mathematical conditions for the validity of GSL in each case. Further we find that GSL restricts the mass of black hole for accretion of phantom energy. As such we obtain upper bounds on the mass of black hole above which the black hole cannot accrete the phantom fluid, otherwise the GSL is violated.


2021 ◽  
Vol 2081 (1) ◽  
pp. 012005
Author(s):  
A C Gutiérrez-Piñeres ◽  
N H Beltrán ◽  
C S López-Monsalvo

Abstract A central problem in General Relativity is obtaining a solution to describe the source’s interior counterpart for Kerr black hole. Besides, determining a method to match the interior and exterior solutions through a surface free of predefined coordinates remains an open problem. In this work, we present the ansatz formulated by the Newman-Janis to generate solutions to the Einstein field equation inspired by the mention problems. We present a collection of independent classes of exact interior solutions of the Einstein equation describing rotating fluids with anisotropic pressures. Furthermore, we will elaborate on some obtained solutions by alluding to rotating wormholes.


Author(s):  
Pei-Ming Ho

Assuming the standard effective-field-theoretic formulation of Hawking radiation, we show explicitly how a generic effective theory predicts a firewall from an initially uneventful horizon for a spherically symmetric, uncharged black hole in [Formula: see text] dimensions for [Formula: see text]. The firewall is created via higher-derivative interactions within the scrambling time after the collapsing matter enters the trapping horizon. This result manifests the trans-Planckian problem of Hawking radiation and demonstrates the incompatibility between Hawking radiation and the uneventful horizon.


1978 ◽  
Vol 9 (12) ◽  
pp. 1089-1100 ◽  
Author(s):  
S. V. Dhurandhar ◽  
J. V. Narlikar

Sign in / Sign up

Export Citation Format

Share Document