scholarly journals From uneventful Horizon to firewall in D-dimensional effective theory

Author(s):  
Pei-Ming Ho

Assuming the standard effective-field-theoretic formulation of Hawking radiation, we show explicitly how a generic effective theory predicts a firewall from an initially uneventful horizon for a spherically symmetric, uncharged black hole in [Formula: see text] dimensions for [Formula: see text]. The firewall is created via higher-derivative interactions within the scrambling time after the collapsing matter enters the trapping horizon. This result manifests the trans-Planckian problem of Hawking radiation and demonstrates the incompatibility between Hawking radiation and the uneventful horizon.

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Pei-Ming Ho ◽  
Hikaru Kawai ◽  
Yuki Yokokura

Abstract In the background of a gravitational collapse, we compute the transition amplitudes for the creation of particles for distant observers due to higher-derivative interactions in addition to Hawking radiation. The amplitudes grow exponentially with time and become of order 1 when the collapsing matter is about a Planck length outside the horizon. As a result, the effective theory breaks down at the scrambling time, invalidating its prediction of Hawking radiation. Planckian physics comes into play to decide the fate of black-hole evaporation.


2010 ◽  
Vol 25 (21) ◽  
pp. 4123-4140 ◽  
Author(s):  
KOICHIRO UMETSU

We present the derivation of Hawking radiation by using the tunneling mechanism in a rotating and charged black hole background. We show that the four-dimensional Kerr–Newman metric, which has a spherically nonsymmetric geometry, becomes an effectively two-dimensional spherically symmetric metric by using the technique of the dimensional reduction near the horizon. We can thus readily apply the tunneling mechanism to the nonspherical Kerr and Kerr–Newman metric.


1997 ◽  
Vol 12 (35) ◽  
pp. 2683-2689 ◽  
Author(s):  
W. Kummer ◽  
H. Liebl ◽  
D. V. Vassilevich

It is well known that spherically symmetric reduction of general relativity (SSG) leads to non-minimally coupled scalar matter. We generalize (and correct) recent results to Hawking radiation for a class of dilaton models which share with the Schwarzschild black hole non-minimal coupling of scalar fields and the basic global structure. An inherent ambiguity of such models (if they differ from SSG) is discussed. However, for SSG we obtain the rather disquieting result of a negative Hawking flux at infinity, if the usual recipe for such calculations is applied.


2002 ◽  
Vol 17 (20) ◽  
pp. 2721-2725 ◽  
Author(s):  
RENAUD PARENTANI

The study of acoustic black holes has been undertaken to provide new insights about the role of high frequencies in black hole evaporation. Because of the infinite gravitational redshift from the event horizon, Hawking quanta emerge from configurations which possessed ultra high (trans-Planckian) frequencies. Therefore Hawking radiation cannot be derived within the framework of a low energy effective theory; and in all derivations there are some assumptions concerning Planck scale physics. The analogy with condensed matter physics was thus introduced to see if the asymptotic properties of the Hawking phonons emitted by an acoustic black hole, namely stationarity and thermality, are sensitive to the high frequency physics which stems from the granular character of matter and which is governed by a non-linear dispersion relation. In 1995 Unruh showed that they are not sensitive in this respect, in spite of the fact that phonon propagation near the (acoustic) horizon drastically differs from that of photons. In 2000 the same analogy was used to establish the robustness of the spectrum of primordial density fluctuations in inflationary models. This analogy is currently stimulating research for experimenting Hawking radiation. Finally it could also be a useful guide for going beyond the semi-classical description of black hole evaporation.


2021 ◽  
Vol 111 (4) ◽  
Author(s):  
Fiona Kurpicz ◽  
Nicola Pinamonti ◽  
Rainer Verch

AbstractWe consider spherically symmetric spacetimes with an outer trapping horizon. Such spacetimes are generalizations of spherically symmetric black hole spacetimes where the central mass can vary with time, like in black hole collapse or black hole evaporation. While these spacetimes possess in general no timelike Killing vector field, they admit a Kodama vector field which in some ways provides a replacement. The Kodama vector field allows the definition of a surface gravity of the outer trapping horizon. Spherically symmetric spacelike cross sections of the outer trapping horizon define in- and outgoing lightlike congruences. We investigate a scaling limit of Hadamard 2-point functions of a quantum field on the spacetime onto the ingoing lightlike congruence. The scaling limit 2-point function has a universal form and a thermal spectrum with respect to the time parameter of the Kodama flow, where the inverse temperature $$\beta = 2\pi /\kappa $$ β = 2 π / κ is related to the surface gravity $$\kappa $$ κ of the horizon cross section in the same way as in the Hawking effect for an asymptotically static black hole. Similarly, the tunnelling probability that can be obtained in the scaling limit between in- and outgoing Fourier modes with respect to the time parameter of the Kodama flow shows a thermal distribution with the same inverse temperature, determined by the surface gravity. This can be seen as a local counterpart of the Hawking effect for a dynamical horizon in the scaling limit. Moreover, the scaling limit 2-point function allows it to define a scaling limit theory, a quantum field theory on the ingoing lightlike congruence emanating from a horizon cross section. The scaling limit 2-point function as well as the 2-point functions of coherent states of the scaling limit theory is correlation-free with respect to separation along the horizon cross section; therefore, their relative entropies behave proportional to the cross-sectional area. We thus obtain a proportionality of the relative entropy of coherent states of the scaling limit theory and the area of the horizon cross section with respect to which the scaling limit is defined. Thereby, we establish a local counterpart, and microscopic interpretation in the setting of quantum field theory on curved spacetimes, of the dynamical laws of outer trapping horizons, derived by Hayward and others in generalizing the laws of black hole dynamics originally shown for stationary black holes by Bardeen, Carter and Hawking.


2009 ◽  
Vol 24 (14) ◽  
pp. 1159-1165 ◽  
Author(s):  
DE-YOU CHEN ◽  
XIAO-TAO ZU

Recent research on Hawking radiations of the Rindler spacetime and spherically symmetric uncharged spacetime shows that the Hawking temperature can be obtained by fermions tunnelling method. In this paper, we extend this work to the charged rotating spacetime and review the Hawking radiation of the Kerr–Sen dilaton–axion black hole by fermions tunnelling. The Hawking temperature is recovered and is exactly the same as that obtained by other methods.


2020 ◽  
Vol 35 (28) ◽  
pp. 2050236
Author(s):  
Shiwei Zhou ◽  
Kui Xiao

Propagation of sound waves in a flowing fluid can be viewed as a minimally coupled massless scalar field propagating in curved spacetime. The analogue Hawking radiation from a spherically symmetric acoustic black hole and a (2 + 1)-dimensional rotating acoustic black hole are investigated respectively in Damour–Ruffini’s method. The emission rate and Hawking temperature are obtained, which are related to acoustic black holes parameter.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950074 ◽  
Author(s):  
Marco M. Dias e Costa ◽  
J. M. Toledo ◽  
V. B. Bezerra

We obtain the solution corresponding to a static and spherically symmetric black hole with a cloud of strings (Letelier spacetime) immersed in a quintessential fluid. We discuss some aspects of its thermodynamics and complete proceeding studies in the spacetime of Schwarzschild with quintessence and a solid deficit angle, which is mathematically analogous to the solution we obtained. We also present a discussion about Hawking radiation of particles, in the background under consideration and compare with related studies in the literature.


2008 ◽  
Vol 17 (13n14) ◽  
pp. 2359-2366 ◽  
Author(s):  
ALEX B. NIELSEN

We discuss some of the drawbacks of using event horizons to define black holes and suggest ways in which black holes can be described without event horizons, using trapping horizons. We show that these trapping horizons give rise to thermodynamic behavior and possibly Hawking radiation too. This raises the issue of whether the event horizon or the trapping horizon should be seen as the true boundary of a black hole. This difference is important if we believe that quantum gravity will resolve the central singularity of the black hole and clarifies several of the issues associated with black hole thermodynamics and information loss.


Sign in / Sign up

Export Citation Format

Share Document