scholarly journals LORENTZ INVARIANCE VIOLATION MATRIX FROM A GENERAL PRINCIPLE

2010 ◽  
Vol 25 (29) ◽  
pp. 2489-2499 ◽  
Author(s):  
LINGLI ZHOU ◽  
BO-QIANG MA

We show that a general principle of physical independence or physical invariance of mathematical background manifold leads to a replacement of the common derivative operators by the covariant co-derivative ones. This replacement naturally induces a background matrix, by means of which we obtain an effective Lagrangian for the minimal standard model with supplement terms characterizing Lorentz invariance violation or anisotropy of spacetime. We construct a simple model of the background matrix and find that the strength of Lorentz violation of proton in the photopion production is of the order 10-23.

Symmetry ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1419 ◽  
Author(s):  
José Manuel Carmona ◽  
José Luis Cortés ◽  
José Javier Relancio ◽  
Maykoll Anthonny Reyes

The observation of cosmic neutrinos up to 2 PeV is used to put bounds on the energy scale of Lorentz invariance violation through the loss of energy due to the production of e + e - pairs in the propagation of superluminal neutrinos. A model to study this effect, which allows us to understand qualitatively the results of numerical simulations, is presented.


Galaxies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 12
Author(s):  
Rui Xu ◽  
Yong Gao ◽  
Lijing Shao

We studied the effects of the Lorentz invariance violation on the rotation of neutron stars (NSs) in the minimal gravitational Standard-Model Extension framework, and calculated the quadrupole radiation generated by them. Aiming at testing Lorentz invariance with observations of continuous gravitational waves (GWs) from rotating NSs in the future, we compared the GW spectra of a rotating ellipsoidal NS under Lorentz-violating gravity with those of a Lorentz-invariant one. The former were found to possess frequency components higher than the second harmonic, which does not happen for the latter, indicating those higher frequency components to be potential signatures of Lorentz violation in continuous GW spectra of rotating NSs.


2019 ◽  
Vol 28 (01) ◽  
pp. 1950028 ◽  
Author(s):  
H. A. S. Costa ◽  
P. R. S. Carvalho ◽  
I. G. da Paz

We employ techniques from quantum estimation theory (QET) to estimate the Lorentz violation parameters in the (1+3)-dimensional flat spacetime. We obtain and discuss the expression of the quantum Fisher information (QFI) in terms of the Lorentz violation parameter [Formula: see text] and the momentum [Formula: see text] of the created particles. We show that the maximum QFI is achieved for a specific momentum [Formula: see text]. We also find that the optimal precision of estimation of the Lorentz violation parameter is obtained near the Planck scale.


Sign in / Sign up

Export Citation Format

Share Document