flat spacetime
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 62)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Ming-Hui Yu ◽  
Xian-Hui Ge

AbstractWe study the Page curve for eternal Garfinkle–Horowitz–Strominger dilaton black holes in four dimensional asymptotically flat spacetime by using the island paradigm. The results demonstrate that without the island, the entanglement entropy of Hawking radiation is proportional to time and becomes divergent at late times. While taking account of the existence of the island outside the event horizon, the entanglement entropy stops growing at late times and eventually reaches a saturation value. This value is twice of the Bekenstein–Hawking entropy and consistent with the finiteness of the von Neumann entropy of eternal black holes. Moreover, we discuss the impact of the stringy coefficient n and charge Q on the Page time and the scrambling time respectively. For the non-extremal case, the influence of the coefficient n on them is small compared to the influence of the charge Q. However, for the extremal case, the Page time and the scrambling time become divergent or near vanishing. This implies the island paradigm needs further investigation.


Author(s):  
Vitor Cardoso ◽  
Caio F. B. Macedo ◽  
Kei-ichi Maeda ◽  
Hirotada Okawa

Abstract Black holes are thought to describe the geometry of massive, dark compact objects in the universe. To further support and quantify this long-held belief requires knowledge of possible, if exotic alternatives. Here, we wish to understand how compact can self-gravitating solutions be. We discuss theories with a well-posed initial value problem, consisting in either a single self-interacting scalar, vector or both. We focus on spherically symmetric solutions, investigating the influence of self-interacting potentials into the compactness of the solutions, in particular those that allow for flat-spacetime solutions. We are able to connect such stars to hairy black hole solutions, which emerge as a zero-mass black hole. We show that such stars can have light rings, but their compactness is never parametrically close to that of black holes. The challenge of finding black hole mimickers to investigate full numerical-relativity binary setups remains open.


2021 ◽  
Vol 38 (23) ◽  
pp. 238001
Author(s):  
Niels Linnemann ◽  
James Read

Abstract We study the propagation of Maxwellian electromagnetic waves in curved spacetimes in terms of the appropriate geometrical optics limit, notions of signal speed, and minimal coupling prescription from Maxwellian theory in flat spacetime. In the course of this, we counter a recent major claim by Asenjo and Hojman (2017) to the effect that the geometrical optics limit is partly ill-defined in Gödel spacetime; we thereby dissolve the present tension concerning established results on wave propagation and the optical limit.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
L. N. Granda

Abstract New corrections to General Relativity are considered in the context of modified f(R) gravity, that satisfy cosmological and local gravity constraints. The proposed models behave asymptotically as R − 2Λ at large curvature and show the vanishing of the cosmological constant at the flat spacetime limit. The chameleon mechanism and thin shell restrictions for local systems were analyzed, and bounds on the models were found. The steepness of the deviation parameter m at late times leads to measurable signal of scalar-tensor regime in matter perturbations, that allows to detect departures form the ΛCDM model. The theoretical results for the evolution of the weighted growth rate fσ8(z), from the proposed models, were analyzed.


Author(s):  
Edgar Gasperin ◽  
Juan Antonio Valiente Kroon

Abstract Linear zero-rest-mass fields generically develop logarithmic singularities at the critical sets where spatial infinity meets null infinity. Friedrich's representation of spatial infinity is ideally suited to study this phenomenon. These logarithmic singularities are an obstruction to the smoothness of the zero-rest-mass field at null infinity and, in particular, to peeling. In the case of the spin-2 field it has been shown that these logarithmic singularities can be precluded if the initial data for the field satisfies a certain regularity condition involving the vanishing, at spatial infinity, of a certain spinor (the linearised Cotton spinor) and its totally symmetrised derivatives. In this article we investigate the relation between this regularity condition and the staticity of the spin-2 field. It is shown that while any static spin-2 field satisfies the regularity condition, not every solution satisfying the regularity condition is static. This result is in contrast with what happens in the case of General Relativity where staticity in a neighbourhood of spatial infinity and the smoothness of the field at future and past null infinities are much more closely related.


2021 ◽  
pp. 435-448
Author(s):  
Andrew M. Steane

Classical field theory, as it is applied to the most simple scalar, vector and spinor fields in flat spacetime, is described. The Klein-Gordan, Weyl and Dirac equations are obtained, and some features of their solutions are discussed. The Yukawa potential, the plane wave solutions, and the conserved currents are obtained. Spinors are introduced, both through physical pictures (flagpole and flag) and algebraic defintions (complex vectors). The relationship between spinors and four-vectors is given, and related to the Lie groups SU(2) and SO(3). The Dirac spinor is introduced.


2021 ◽  
pp. 32-39
Author(s):  
Andrew M. Steane

We imagine a group of people living on the inner surface of a huge rotating cylinder in flat spacetime. Their experiences are described and calculated. Thus we introduce gravimagnetic effects and the connection between gravitational time dilation and gravitational acceleration. Gravimagnetic effects such as the force on moving particles and the precession of gyroscopes are derived. The Thomas precession is obtained. These observations illustrate GR ideas that are applicable more generally. Some properties of the general stationary metric are introduced.


2021 ◽  
pp. 449-459
Author(s):  
Andrew M. Steane

An introduction to Lagrangian methods for classical fields in flat spacetime and then in curved spacetime. The Euler-Lagrange equations for Lagrangian densities are obtained, and applied to the wave, Klein-Gordan, Weyl, Dirac, Maxwell and Proca equations. The canonical energy tensor is obtained. Conservation laws and Noether’s theorem are described. An example of the treatment of Interactions is given by presenting the the QED Lagrangian. Finally, covariant Lagrangian methods are described, and the Einstein field eqution is derived from the Einstein-Hilbert action.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Laura Donnay ◽  
Romain Ruzziconi

Abstract Starting from gravity in asymptotically flat spacetime, the BMS momentum fluxes are constructed. These are non-local expressions of the solution space living on the celestial Riemann surface. They transform in the coadjoint representation of the extended BMS group and correspond to Virasoro primaries under the action of bulk superrotations. The relation between the BMS momentum fluxes and celestial CFT operators is then established: the supermomentum flux is related to the supertranslation operator and the super angular momentum flux is linked to the stress-energy tensor of the celestial CFT. The transformation under the action of asymptotic symmetries and the OPEs of the celestial CFT currents are deduced from the BMS flux algebra.


Universe ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 413
Author(s):  
Neven Bilić ◽  
Hrvoje Nikolić

We study the conditions under which an analog acoustic geometry of a relativistic fluid in flat spacetime can take the same form as the Schwarzschild black hole geometry. We find that the speed of sound must necessarily be equal to the speed of light. Since the speed of the fluid cannot exceed the speed of light, this implies that analog Schwarzschild geometry necessarily breaks down behind the horizon.


Sign in / Sign up

Export Citation Format

Share Document