scholarly journals Chiral molecule in the Standard Model

2014 ◽  
Vol 29 (11) ◽  
pp. 1450056
Author(s):  
Takeshi Fukuyama

This paper is based on the talk at the conference of "Spectroscopic Studies on Molecular Chirality" held on December 20–21, 2013. The objects of the present paper are to (1) derive the energy difference between Laevorotatory, or left-handed, (L-) and Dextrorotatory, or right-handed, (D-) molecules and to (2) discuss how this tiny energy difference leads us to the observed enantiomer excess. Relations with other parity violating phenomena in molecules, electric dipole moment (EDM) and natural optical activity, are also discussed.

2018 ◽  
Vol 175 ◽  
pp. 01014 ◽  
Author(s):  
Boram Yoon ◽  
Tanmoy Bhattacharya ◽  
Rajan Gupta

For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.


2002 ◽  
Vol 17 (23) ◽  
pp. 1489-1497 ◽  
Author(s):  
C. Q. GENG ◽  
J. N. NG ◽  
T. H. WU

We study the CP violating effects in the decay of η → π+π- γ. We show that to have CP violation in the decay, one has to consider both linear and circular photon polarizations. In the standard model, the polarizations are vanishingly small. However, model independently, i.e. using only experimental constraint imposed by the limit on Br (η → π+ π-), it can be up to O(10%). We also explore various possible operators and we find that the tensor type operator, possibly arising from a nonzero CP violating electric dipole moment of the strange quark, can induce a sizable linear photon polarization.


Author(s):  
Engel Roza

An analysis is presented of the possible existence of a second anomalous dipole moment of Dirac’s particle next to the one associated with the angular momentum. It includes a discussion why, in spite of his own derivation, Dirac has doubted about its relevancy. It is shown why since then it has been overlooked and why it has vanished from leading textbooks. A critical survey is given on the reasons of its reject, including the failure of attempts to measure and the perceived violations of time reversal symmetry and charge-parity symmetry. It is emphasized that the anomalous electric dipole moment of the pointlike electron (AEDM) is fundamentally different from the quantum field type electric dipole moment of an electron (eEDM) as defined in the standard model of particle physics. The analysis has resulted into the identification of a third type Dirac particle, next to the electron type and the Majorana particle. It is shown that, unlike as in the case of the electron type, its second anomalous dipole moment is real valued and is therefore subject to polarization in a vector field. Examples are given that it may have a possible impact in the nuclear domain and in the gravitational domain.


Sign in / Sign up

Export Citation Format

Share Document