scholarly journals ASYMPTOTIC QUASINORMAL MODES OF d-DIMENSIONAL SCHWARZSCHILD BLACK HOLE WITH GAUSS–BONNET CORRECTION

2006 ◽  
Vol 21 (17) ◽  
pp. 3565-3574 ◽  
Author(s):  
SAYAN K. CHAKRABARTI ◽  
KUMAR S. GUPTA

We obtain an analytic expression for the highly damped asymptotic quasinormal mode frequencies of the (d ≥ 5)-dimensional Schwarzschild black hole modified by the Gauss–Bonnet term, which appears in string derived models of gravity. The analytic expression is obtained under the string inspired assumption that there exists a minimum length scale in the system and in the limit when the coupling in front of the Gauss–Bonnet term in the action is small. Although there are several similarities of this geometry with that of the Schwarzschild black hole, the asymptotic quasinormal mode frequencies are quite different. In particular, the real part of the asymptotic quasinormal frequencies for this class of single horizon black holes is not proportional to log (3).

2006 ◽  
Vol 21 (07) ◽  
pp. 593-601
Author(s):  
JILIANG JING

We study analytically the evolution of massless Dirac fields in the background of the Schwarzschild black hole. It is shown that although the quasinormal frequencies are the same for opposite chirality with the same |k|, we can differentiate neutrinos from anti-neutrinos in evolution of the massless Dirac fields provided we know both stages for the quasinormal modes and the power-law tail behavior since the decay rate of the neutrinos is described by t-(2|k|+1) while anti-neutrinos is t-(2|k|+3).


2019 ◽  
Vol 28 (09) ◽  
pp. 1950113 ◽  
Author(s):  
Bin Liang ◽  
Shao-Wen Wei ◽  
Yu-Xiao Liu

Using the quasinormal modes of a massless scalar perturbation, we investigate the small/large black hole phase transition in the Lorentz symmetry breaking massive gravity. We mainly focus on two issues: (i) the sign change of slope of the quasinormal mode frequencies in the complex-[Formula: see text] diagram; (ii) the behaviors of the imaginary part of the quasinormal mode frequencies along the isobaric or isothermal processes. For the first issue, our result shows that, at low fixed temperature or pressure, the phase transition can be probed by the sign change of slope. While increasing the temperature or pressure to certain values near the critical point, there will appear the deflection point, which indicates that such method may not be appropriate to test the phase transition. In particular, the behavior of the quasinormal mode frequencies for the small and large black holes tend to be the same at the critical point. For the second issue, it is shown that the nonmonotonic behavior is observed only when the small/large black hole phase transition occurs. Therefore, this property can provide us with an additional method to probe the phase transition through the quasinormal modes.


2017 ◽  
Vol 145 (5) ◽  
pp. 1659-1678 ◽  
Author(s):  
Michael Battalio ◽  
Jamie Dyer

Abstract The minimum length scale to investigate quasigeostrophic (QG) vertical motion within a mesoscale operational model is determined using simulations of 28 baroclinic systems from the North American Mesoscale Forecast System (NAM) model. Two upscaling methods are tested to find the optimal QG characteristic length. The box method takes an average of each field before performing finite-differencing calculations. The cross method samples the data at increasing distances between finite-difference calculations. The traditional QG omega equation is evaluated with each upscaling technique and found to be reliable between 800 and 200 hPa. The minimum QG length scale is found to be L = 140 km considering correlations of QG omega back to operational model values, which are for both methods on an “extended” QG omega. The box method performs marginally better than the cross method due to a larger reduction of QG forcing in higher-order wavenumbers, but at the appropriate length scale, both methods have indistinguishable correlations.


Sign in / Sign up

Export Citation Format

Share Document