RAINBOW STATISTICS

2009 ◽  
Vol 24 (25n26) ◽  
pp. 4623-4641 ◽  
Author(s):  
MICHELE ARZANO ◽  
DARIO BENEDETTI

Noncommutative quantum field theories and their global quantum group symmetries provide an intriguing attempt to go beyond the realm of standard local quantum field theory. A common feature of these models is that the quantum group symmetry of their Hilbert spaces induces additional structure in the multiparticle states which reflects a nontrivial momentum-dependent statistics. We investigate the properties of this "rainbow statistics" in the particular context of κ-quantum fields and discuss the analogies/differences with models with twisted statistics.

2021 ◽  
Author(s):  
Satish Ramakrishna

Abstract The Cohen-Kaplan-Nelson bound is imposed on the grounds of logical consistency (with classical General Relativity) upon local quantum field theories. This paper puts the bound into the context of a thermodynamic principle applicable to a field with a particular equation of state in an expanding universe. This is achieved without overtly appealing to either a decreasing density of states or a minimum coupling requirement, though they might still be consistent with the results described. The paper establishes that the holographic principle applied to cosmology is consistent with minimizing the free energy of the universe in the canonical ensemble, upon the assumption that the ultraviolet cutoff is a function of the causal horizon scale.


2013 ◽  
Vol 87 (6) ◽  
Author(s):  
Amilcar R. de Queiroz ◽  
Rahul Srivastava ◽  
Sachindeo Vaidya

2008 ◽  
Vol 20 (08) ◽  
pp. 933-949
Author(s):  
C. A. LINHARES ◽  
A. P. C. MALBOUISSON ◽  
I. RODITI

Starting from the complete Mellin representation of Feynman amplitudes for noncommutative vulcanized scalar quantum field theory, introduced in a previous publication, we generalize to this theory the study of asymptotic behaviors under scaling of arbitrary subsets of external invariants of any Feynman amplitude. This is accomplished in both convergent and renormalized amplitudes.


2021 ◽  
Author(s):  
Satish Ramakrishna

Abstract The Cohen-Kaplan-Nelson bound is imposed on the grounds of logical consistency (with classical General Relativity) upon local quantum field theories. This paper puts the bound into the context of a thermodynamic principle applicable to a field with a particular equation of state in an expanding universe. This is achieved without overtly appealing to either a decreasing density of states or a minimum coupling requirement, though they might still be consistent with the results described. The paper establishes that the holographic principle applied to cosmology is consistent with minimizing the free energy of the universe in the canonical ensemble, upon the assumption that the ultraviolet cutoff is a function of the causal horizon scale.


Author(s):  
Amir Abbass Varshovi

A representation of general translation-invariant star products ⋆ in the algebra of [Formula: see text] is introduced which results in the Moyal–Weyl–Wigner quantization. It provides a matrix model for general translation-invariant noncommutative quantum field theories in terms of the noncommutative calculus on differential graded algebras. Upon this machinery a cohomology theory, the so-called ⋆-cohomology, with groups [Formula: see text], [Formula: see text], is worked out which provides a cohomological framework to formulate general translation-invariant noncommutative quantum field theories based on the achievements for the commutative fields, and is comparable to the Seiberg–Witten map for the Moyal case. Employing the Chern–Weil theory via the integral classes of [Formula: see text] a noncommutative version of the Chern character is defined as an equivariant form which contains topological information about the corresponding translation-invariant noncommutative Yang–Mills theory. Thereby, we study the mentioned Yang–Mills theories with three types of actions of the gauge fields on the spinors, the ordinary, the inverse, and the adjoint action, and then some exact solutions for their anomalous behaviors are worked out via employing the homotopic correlation on the integral classes of ⋆-cohomology. Finally, the corresponding consistent anomalies are also derived from this topological Chern character in the ⋆-cohomology.


2004 ◽  
Vol 19 (32) ◽  
pp. 5693-5706 ◽  
Author(s):  
CHRISTIAN BLOHMANN

Perturbative deformations of symmetry structures on noncommutative spaces are studied in view of noncommutative quantum field theories. The rigidity of enveloping algebras of semisimple Lie algebras with respect to formal deformations is reviewed in the context of star products. It is shown that rigidity of symmetry algebras extends to rigidity of the action of the symmetry on the space. This implies that the noncommutative spaces considered can be realized as star products by particular ordering prescriptions which are compatible with the symmetry. These symmetry preserving ordering prescriptions are calculated for the quantum plane and four-dimensional quantum Euclidean space. The result can be used to construct invariant Lagrangians for quantum field theory on noncommutative spaces with a deformed symmetry.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Clay Córdova ◽  
Thomas T. Dumitrescu ◽  
Kenneth Intriligator

Abstract We examine six-dimensional quantum field theories through the lens of higher-form global symmetries. Every Yang-Mills gauge theory in six dimensions, with field strength f(2), naturally gives rise to a continuous 1-form global symmetry associated with the 2-form instanton current J(2)∼ ∗Tr (f(2) ∧ f(2)). We show that suitable mixed anomalies involving the gauge field f(2) and ordinary 0-form global symmetries, such as flavor or Poincaré symmetries, lead to continuous 2-group global symmetries, which allow two flavor currents or two stress tensors to fuse into the 2-form current J(2). We discuss several features of 2-group symmetry in six dimensions, many of which parallel the four-dimensional case. The majority of six-dimensional supersymmetric conformal field theories (SCFTs) and little string theories have infrared phases with non-abelian gauge fields. We show that the mixed anomalies leading to 2-group symmetries can be present in little string theories, but that they are necessarily absent in SCFTs. This allows us to establish a previously conjectured algorithm for computing the ’t Hooft anomalies of most SCFTs from the spectrum of weakly-coupled massless particles on the tensor branch of these theories. We then apply this understanding to prove that the a-type Weyl anomaly of all SCFTs with a tensor branch must be positive, a > 0.


Sign in / Sign up

Export Citation Format

Share Document