scholarly journals STUDY OF CP VIOLATION IN $\Lambda_c^+$ DECAY

2011 ◽  
Vol 26 (15) ◽  
pp. 2523-2535 ◽  
Author(s):  
XIAN-WEI KANG ◽  
HAI-BO LI ◽  
GONG-RU LU ◽  
ALAKABHA DATTA

In this paper, we study CP violation in [Formula: see text] and [Formula: see text] decays, where B, P and V denote a light spin-½ baryon, pseudoscalar and a vector meson respectively. In these processes the T odd CP violating triple-product (TP) correlations are examined. The genuine CP violating observables which are composed of the helicity amplitudes occurring in the angular distribution are constructed. Experimentally, by performing a full angular analysis it is shown how one may extract the helicity amplitudes and then obtain the TP asymmetries. We estimate the TP asymmetries in [Formula: see text] decays to be negligible in the Standard Model making these processes an excellent place to look for new physics. Taking a two-Higgs doublet model, as an example of new physics, we show that large TP asymmetries are possible in these decays. Finally, we discuss how BES-III and super τ-charm experiments will be sensitive to these CP violating signals in [Formula: see text] decays.

2020 ◽  
Vol 80 (7) ◽  
Author(s):  
David Delepine ◽  
Gaber Faisel ◽  
Carlos A. Ramirez

Abstract In this paper we investigate CP violation in charged decays of D meson. Particularly, we study the direct CP asymmetry of the Cabibbo favored non-leptonic $$D^+ \rightarrow {\bar{K}}^0 \pi ^+$$D+→K¯0π+ and the doubly Cabibbo-suppressed decay mode $$D^+ \rightarrow K^0 \pi ^+$$D+→K0π+ within standard model, two Higgs doublet model with generic Yukawa structure and left right symmetric models. In the standard model, we first derive the contributions from box and di-penguin diagrams contributing to their amplitudes which are relevant to the generation of the weak phases essential for non-vanishing direct CP violation. Then, we show that the generated phases are so tiny leading to null direct CP asymmetries of both decay modes. Regarding the two Higgs doublet model with generic Yukawa structure, after taking into account all constraints on the parameter space of the model, we show that the weak phases of the amplitudes can be enhanced compared to the standard model ones. However, the enhancement is still not enough to have sizable direct CP asymmetries. Finally, within left right symmetric models, we find that $$|A^{SM+LR}_{CP} (D^+ \rightarrow {\bar{K}}^0 \pi ^+)|\lesssim \mathcal {O}(10^{-3})$$|ACPSM+LR(D+→K¯0π+)|≲O(10-3) after respecting all relevant constraints on the parameter space of the model.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Victor Ilisie

Abstract In this work we analyse the forward-backward asymmetry of the h → V f f′ decay in the Aligned two-Higgs Doublet Model. The Standard Model prediction for this asymmetry for V = W is small, as it suffers from Yukawa suppression and is absent for V = Z. This does not necessarily have to hold true in the Aligned model where these contributions can in principle be re-enhanced through the independent alignment factors ςf. In this analysis we conclude that, due to the additional contributions corresponding to the Aligned two-Higgs Doublet Model together with extra sources of CP-violation for the V = Z channel, the Standard Model predictions can be significantly modified in a great region of the parameter space. These deviations, that could be potentially measured at the High Luminosity LHC or future Higgs factories, would be a clear signal of new physics, and would shed new light on the possible extensions of the Standard Model and new sources of CP-violation.


1989 ◽  
Vol 04 (28) ◽  
pp. 2757-2766 ◽  
Author(s):  
THOMAS G. RIZZO

Although absent at the tree level in models with only doublet and singlet Higgs representations, the WZH coupling can be induced at the one-loop level. We examine the size of this induced coupling in the two Higgs doublet model due to fermion as well as Higgs/gauge boson loops. Such couplings could provide a new mechanism for charged Higgs production at colliders and are ‘backgrounds’ to new physics beyond the Standard Model. We find, however, that these couplings are very weak for all regions of the parameter space explored.


2006 ◽  
Vol 21 (12) ◽  
pp. 2617-2634 ◽  
Author(s):  
S. RAI CHOUDHURY ◽  
A. S. CORNELL ◽  
NAVEEN GAUR ◽  
G. C. JOSHI

Leptonic decays of B-mesons are theoretically very clean probes for testing the Standard Model (SM) and possible physics beyond it. Amongst the various leptonic decays of the B-meson, the pure dileptonic decay B → ℓ+ ℓ- is very important, as this mode is helicity suppressed in the SM but can be substantially enhanced in some of the models beyond the SM, such as supersymmetric (SUSY) theories and the two Higgs doublet model (2HDM). Although the purely dileptonic decay mode is helicity suppressed in the SM its associated mode B → ℓ+ ℓ-γ does not have the same suppression, due to the presence of γ in the final state. In this paper we will also analyze the effects of enhanced Z-penguins on these two decay modes.


2011 ◽  
Vol 02 ◽  
pp. 107-111
Author(s):  
◽  
SÉBASTIEN DESCOTES-GENON

I review the role of charm decays in the determination of the structure of the CKM matrix within the Standard Model, focusing on γ,|Vcd| and |Vcs|. In addition, I illustrate how these decays can be used to constrain some New Physics scenario, taking as an example the Two Higgs-Doublet Model of type II.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Svjetlana Fajfer ◽  
Jernej F. Kamenik ◽  
M. Tammaro

Abstract We explore the interplay of New Physics (NP) effects in (g− 2)ℓ and h→ℓ+ℓ− within the Standard Model Effective Field Theory (SMEFT) framework, including one-loop Renormalization Group (RG) evolution of the Wilson coefficients as well as matching to the observables below the electroweak symmetry breaking scale. We include both the leading dimension six chirality flipping operators including a Higgs and SU(2)L gauge bosons as well as four-fermion scalar and tensor operators, forming a closed operator set under the SMEFT RG equations. We compare present and future experimental sensitivity to different representative benchmark scenarios. We also consider two simple UV completions, a Two Higgs Doublet Model and a single scalar LeptoQuark extension of the SM, and show how tree level matching to SMEFT followed by the one-loop RG evolution down to the electroweak scale can reproduce with high accuracy the (g−2)ℓ and h→ℓ+ℓ− contributions obtained by the complete one- and even two-loop calculations in the full models.


1990 ◽  
Vol 337 (2) ◽  
pp. 284-312 ◽  
Author(s):  
Andrzej J. Buras ◽  
Paweł Krawczyk ◽  
Markus E. Lautenbacher ◽  
Claudia Salazar

2018 ◽  
Vol 33 (29) ◽  
pp. 1850169 ◽  
Author(s):  
E. Di Salvo ◽  
F. Fontanelli ◽  
Z. J. Ajaltouni

We examine in detail the semileptonic decay [Formula: see text], which may confirm previous hints, from the analogous [Formula: see text] decay, of a new physics beyond the Standard Model. First of all, starting from rather general assumptions, we predict the partial width of the decay. Then we analyze the effects of five possible new physics interactions, adopting in each case five different form factors. In particular, for each term beyond the Standard Model, we find some constraints on the strength and phase of the coupling, which we combine with those found by other authors in analyzing the analogous semileptonic decays of [Formula: see text]. Our analysis involves some dimensionless quantities, substantially independent of the form factor, but which, owing to the constraints, turn out to be strongly sensitive to the kind of nonstandard interaction. We also introduce a criterion thanks to which one can discriminate among the various new physics terms: the left-handed current and the two-Higgs-doublet model appear privileged, with a neat preference for the former interaction. Finally, we suggest a differential observable that could, in principle, help to distinguish between the two cases.


Sign in / Sign up

Export Citation Format

Share Document