scholarly journals Finite temperature Casimir effect for massive scalars in a magnetic field

2014 ◽  
Vol 29 (17) ◽  
pp. 1450091 ◽  
Author(s):  
Andrea Erdas ◽  
Kevin P. Seltzer

The finite temperature Casimir effect for a charged, massive scalar field confined between very large, perfectly conducting parallel plates is studied using the zeta function regularization technique. The scalar field satisfies Dirichlet boundary conditions at the plates and a magnetic field perpendicular to the plates is present. Four equivalent expressions for the zeta function are obtained, which are exact to all orders in the magnetic field strength, temperature, scalar field mass and plate distance. The zeta function is used to calculate the Helmholtz free energy of the scalar field and the Casimir pressure on the plates, in the case of high temperature, small plate distance, strong magnetic field and large scalar mass. In all cases, simple analytic expressions of the zeta function, free energy and pressure are obtained, which are very accurate and valid for practically all values of temperature, plate distance, magnetic field and mass.

2016 ◽  
Vol 31 (07) ◽  
pp. 1650018 ◽  
Author(s):  
Andrea Erdas

I investigate the finite temperature Casimir effect for a charged and massless scalar field satisfying mixed (Dirichlet–Neumann) boundary conditions on a pair of plane parallel plates of infinite size. The effect of a uniform magnetic field, perpendicular to the plates, on the Helmholtz free energy and Casimir pressure is studied. The [Formula: see text]-function regularization technique is used to obtain finite results. Simple analytic expressions are obtained for the zeta function and the free energy, in the limits of small plate distance, high temperature and strong magnetic field. The Casimir pressure is obtained in each of the three limits and the situation of a magnetic field present between and outside the plates, as well as that of a magnetic field present only between the plates is examined. It is discovered that, in the small plate distance and high temperature limits, the repulsive pressure is less when the magnetic field is present between the plates but not outside, than it is when the magnetic field is present between and outside the plates.


2020 ◽  
Vol 35 (31) ◽  
pp. 2050209
Author(s):  
Andrea Erdas

In this paper, I study the Casimir effect caused by a charged and massive scalar field that breaks Lorentz invariance in a CPT-even, aether-like manner. I investigate the case of a scalar field that satisfies Dirichlet or mixed (Dirichlet–Neumann) boundary conditions on a pair of very large plane parallel plates. The case of Neumann boundary conditions is straightforward and will not be examined in detail. I use the [Formula: see text]-function regularization technique to study the effect of a constant magnetic field, orthogonal to the plates, on the Casimir energy and pressure. I investigate the cases of a timelike Lorentz asymmetry, a spacelike Lorentz asymmetry in the direction perpendicular to the plates, and a spacelike asymmetry in the plane of the plates and, in all those cases, derive simple analytic expressions for the zeta function, Casimir energy and pressure in the limits of small plate distance, strong magnetic field and large scalar field mass. I discover that the Casimir energy and pressure, and their magnetic corrections, all strongly depend on the direction of the unit vector that implements the breaking of the Lorentz symmetry.


2012 ◽  
Vol 07 ◽  
pp. 202-208
Author(s):  
XIANG-HUA ZHAI ◽  
YANG YANG ◽  
JIE LAI

We study the finite temperature Casimir effect between perfectly conducting parallel plates in (D + 1)-dimensional spacetime by using zeta-function regularization technique. We get the analytical results for Casimir energy, Casimir free energy, Casimir entropy and Casimir pressure expressed by Riemann zeta function and Bessel function and give the asymptotic expressions for low and high temperature limits. In the case of D = 3, through mathematic transformation, we reproduce the standard results in the literature which is in most times obtained by using Green's function regularization technique.


2016 ◽  
Vol 31 (22) ◽  
pp. 1650127 ◽  
Author(s):  
Borzoo Nazari

In [B. Nazari, Mod. Phys. Lett. A 31, 1650007 (2016)], we calculated finite temperature corrections to the energy of the Casimir effect of two conducting parallel plates in a general weak gravitational field. The calculations was done for the case a scalar field was present between the plates. Here we find the same results in the presence of an electromagnetic field.


1992 ◽  
Vol 07 (29) ◽  
pp. 7365-7399 ◽  
Author(s):  
E. ELIZALDE ◽  
A. ROMEO

The Casimir free energy for a massive bosonic field subject to Dirichlet boundary conditions on hypercuboids of arbitrary dimensions is evaluated in the form of power and exponential expansions for the high- and low-temperature limits, respectively, with the aid of both homogeneous and inhomogeneous multidimensional Epstein zeta functions.


2003 ◽  
Vol 33 (4) ◽  
pp. 860-866 ◽  
Author(s):  
A.C. Aguiar Pinto ◽  
T.M. Britto ◽  
R. Bunchaft ◽  
F. Pascoal ◽  
F.S.S. da Rosa

2004 ◽  
Vol 19 (02) ◽  
pp. 111-116 ◽  
Author(s):  
E. ELIZALDE ◽  
A. C. TORT

We re-evaluate the zero point Casimir energy for the case of a massive scalar field in R1×S3 space, allowing also for deviations from the standard conformal value ξ=1/6, by means of zero temperature zeta function techniques. We show that for the problem at hand this approach is equivalent to the high temperature regularization of the vacuum energy, as conjectured in a previous publication. The analytic continuation can be performed in two ways, which are seen to be equivalent.


Sign in / Sign up

Export Citation Format

Share Document