scholarly journals Magnetic field corrections to the repulsive Casimir effect at finite temperature

2016 ◽  
Vol 31 (07) ◽  
pp. 1650018 ◽  
Author(s):  
Andrea Erdas

I investigate the finite temperature Casimir effect for a charged and massless scalar field satisfying mixed (Dirichlet–Neumann) boundary conditions on a pair of plane parallel plates of infinite size. The effect of a uniform magnetic field, perpendicular to the plates, on the Helmholtz free energy and Casimir pressure is studied. The [Formula: see text]-function regularization technique is used to obtain finite results. Simple analytic expressions are obtained for the zeta function and the free energy, in the limits of small plate distance, high temperature and strong magnetic field. The Casimir pressure is obtained in each of the three limits and the situation of a magnetic field present between and outside the plates, as well as that of a magnetic field present only between the plates is examined. It is discovered that, in the small plate distance and high temperature limits, the repulsive pressure is less when the magnetic field is present between the plates but not outside, than it is when the magnetic field is present between and outside the plates.

2014 ◽  
Vol 29 (17) ◽  
pp. 1450091 ◽  
Author(s):  
Andrea Erdas ◽  
Kevin P. Seltzer

The finite temperature Casimir effect for a charged, massive scalar field confined between very large, perfectly conducting parallel plates is studied using the zeta function regularization technique. The scalar field satisfies Dirichlet boundary conditions at the plates and a magnetic field perpendicular to the plates is present. Four equivalent expressions for the zeta function are obtained, which are exact to all orders in the magnetic field strength, temperature, scalar field mass and plate distance. The zeta function is used to calculate the Helmholtz free energy of the scalar field and the Casimir pressure on the plates, in the case of high temperature, small plate distance, strong magnetic field and large scalar mass. In all cases, simple analytic expressions of the zeta function, free energy and pressure are obtained, which are very accurate and valid for practically all values of temperature, plate distance, magnetic field and mass.


2003 ◽  
Vol 18 (23) ◽  
pp. 4285-4293 ◽  
Author(s):  
M. R. Setare

The Casimir forces on two parallel plates in conformally flat de Sitter background due to conformally coupled massless scalar field satisfying mixed boundary conditions on the plates is investigated. In the general case of mixed boundary conditions formulae are derived for the vacuum expectation values of the energy–momentum tensor and vacuum forces acting on boundaries. Different cosmological constants are assumed for the space between and outside of the plates to have general results applicable to the case of domain wall formations in the early universe.


2015 ◽  
Vol 30 (20) ◽  
pp. 1550099
Author(s):  
Yu. A. Sitenko

Charged massive matter fields of spin-0 and spin-[Formula: see text] are quantized in the presence of an external uniform magnetic field in a spatial region bounded by two parallel plates. The most general set of boundary conditions at the plates, that is required by mathematical consistency and the self-adjointness of the Hamiltonian operator, is employed. The vacuum fluctuations of the matter field in the case of the magnetic field orthogonal to the plates are analyzed, and it is shown that the pressure from the vacuum onto the plates is positive and independent of the boundary condition, as well as of the distance between the plates. Possibilities of the detection of this new-type Casimir effect are discussed.


2012 ◽  
Vol 27 (16) ◽  
pp. 1250082 ◽  
Author(s):  
MUSTAFA ÖZCAN

The Casimir effect giving rise to an attractive force between the closely spaced two concentric spheres that confine the massless scalar field is calculated by using a direct mode summation with contour integration in the complex plane of eigenfrequencies. We developed a new approach appropriate for the calculation of the Casimir energy for spherical boundary conditions. The Casimir energy for a massless scalar field between the closely spaced two concentric spheres coincides with the Casimir energy of the parallel plates for a massless scalar field in the limit when the dimensionless parameter η, ([Formula: see text] where a(b) is inner (outer) radius of sphere), goes to zero. The efficiency of new approach is demonstrated by calculation of the Casimir energy for a massless scalar field between the closely spaced two concentric half spheres.


2012 ◽  
Vol 14 ◽  
pp. 435-444 ◽  
Author(s):  
VALERY N. MARACHEVSKY

Theory of the Casimir effect for a flat graphene layer interacting with a parallel flat material is presented in detail. The high-temperature asymptotics of a free energy in a graphene-metal system coincides with a Drude high-temperature asymptotics of the metal-metal system. High-temperature behavior in the graphene-metal system is expected at separations of the order of 100 nm at temperature T = 300 K .


2019 ◽  
Vol 79 (10) ◽  
Author(s):  
V. B. Bezerra ◽  
C. R. Muniz ◽  
H. S. Vieira

Abstract We investigate the Casimir effect of the massless scalar field in a cavity formed by ideal parallel plates in the spacetime generated by a rotating axially symmetric distribution of vector or scalar (tensor) unparticles, around which the plates orbit. The presence of the unparticles is incorporated to the background by means of a correction to the Kerr solution of the Einstein equations, in which the characteristic length and the scale dimension associated to the unparticle theory are taken into account. We show that the Casimir energy density depends also on these parameters. The analysis of the “ungravity” limit for the Casimir energy density, in which the characteristic length is very large in comparison to the horizon radius, is made, too. At zero temperature, we show that such a limit implies the instability of the system, since the Casimir energy density becomes an imaginary quantity. The general result is compared to the current terrestrial experiments of the Casimir effect. Thermal corrections also are investigated and the ungravity limit again examined, with the aforementioned instability disappearing at high temperatures.


2016 ◽  
Vol 32 (01) ◽  
pp. 1750005 ◽  
Author(s):  
V. B. Bezerra ◽  
M. S. Cunha ◽  
L. F. F. Freitas ◽  
C. R. Muniz ◽  
M. O. Tahim

We calculate the Casimir energy of a massless scalar field in a cavity formed by nearby parallel plates orbiting a rotating spherical body surrounded by quintessence, investigating the influence of the gravitational field on that energy, at zero temperature. This influence includes the effects due to the spacetime dragging caused by the source rotation as well as those ones due to the quintessence. We show that the energy depends on all the involved parameters, as source mass, angular momentum and quintessence state parameter, for any radial coordinate and polar angle. We show that at the north pole the Casimir energy is not influenced by the quintessential matter. At the equatorial plane, when the quintessence is canceled, the result obtained in the literature is recovered. Finally, constraints in the quintessence parameters are obtained from the uncertainty in the current measurements of Casimir effect.


2012 ◽  
Vol 07 ◽  
pp. 202-208
Author(s):  
XIANG-HUA ZHAI ◽  
YANG YANG ◽  
JIE LAI

We study the finite temperature Casimir effect between perfectly conducting parallel plates in (D + 1)-dimensional spacetime by using zeta-function regularization technique. We get the analytical results for Casimir energy, Casimir free energy, Casimir entropy and Casimir pressure expressed by Riemann zeta function and Bessel function and give the asymptotic expressions for low and high temperature limits. In the case of D = 3, through mathematic transformation, we reproduce the standard results in the literature which is in most times obtained by using Green's function regularization technique.


2020 ◽  
Vol 35 (03) ◽  
pp. 2040019
Author(s):  
Irina Pirozhenko

We consider polarizable sheets modeled by a lattice of delta function potentials. The Casimir interaction of two such lattices is calculated at nonzero temperature. The heat kernel expansion for periodic singular background is discussed in relation with the high temperature asymptote of the free energy.


2021 ◽  
Vol 81 (3) ◽  
Author(s):  
C. R Muniz ◽  
V. B. Bezerra ◽  
J. M. Toledo

AbstractWe investigate the Casimir effect between parallel plates placed along a circular trajectory around the rotating Damour–Solodkhin (D–S) and Teo wormholes. This is made through the calculation of the renormalized quantum vacuum energy density of a massless scalar field obeying the Dirichlet boundary conditions, initially at zero temperature. We use the zero tidal approximation inside the cavity. Then, we compare our results with those ones previously obtained in the literature with respect to the Kerr black hole. We also compare the computed Casimir energy density in a static D–S wormhole spacetime with that one recently found for a static Ellis wormhole. In what follows, we investigate the effect around the rotating Teo wormhole by calculating the Casimir energy density between the plates, and compare it with the same quantities obtained previously. Finally, we investigate the phenomenon at finite temperature, obtaining some Casimir thermodynamic quantities in the rotating D–S wormhole spacetime, comparing them with the ones valid in the Kerr black hole spacetime. With this, the ways as gravito-inertial and frame dragging effects influence the vacuum quantum fluctuations inside the Casimir apparatus allows to distinct among the different types of rotating wormholes and black holes.


Sign in / Sign up

Export Citation Format

Share Document