On the Galilean Duffin–Kemmer–Petiau equation in arbitrary dimensions

2020 ◽  
Vol 35 (18) ◽  
pp. 2050086
Author(s):  
M. de Montigny ◽  
E. S. Santos

We obtain the representations of the Galilean covariant Duffin–Kemmer–Petiau equation in an arbitrary number of dimensions. Their purpose is to facilitate the study of nonrelativistic many-body systems with spinless and spin-one fields. A Galilean covariant formalism exploits the tensor structure of relativistic Lorentz-invariant theories by adding one extra spacelike coordinate and working with light-cone coordinates.

1997 ◽  
Vol 08 (04) ◽  
pp. 705-716 ◽  
Author(s):  
Bruce M. Boghosian ◽  
Washington Taylor

A general class of discrete unitary models are described whose behavior in the continuum limit corresponds to a many-body Schrödinger equation. On a quantum computer, these models could be used to simulate quantum many-body systems with an exponential speedup over analogous simulations on classical computers. On a classical computer, these models give an explicitly unitary and local prescription for discretizing the Schrödinger equation. It is shown that models of this type can be constructed for an arbitrary number of particles moving in an arbitrary number of dimensions with an arbitrary interparticle interaction.


2019 ◽  
Vol 99 (20) ◽  
Author(s):  
Shi-Ju Ran ◽  
Bin Xi ◽  
Cheng Peng ◽  
Gang Su ◽  
Maciej Lewenstein

2010 ◽  
Vol 10 (3&4) ◽  
pp. 223-238
Author(s):  
Y.-C. Ou ◽  
M.S. Byrd

\Negativity is regarded as an important measure of entanglement in quantum information theory. In contrast to other measures of entanglement, it is easily computable for bipartite states in arbitrary dimensions. In this paper, based on the negativity and realignment, we provide a set of entanglement-sharing constraints for multipartite states, where the entanglement is not necessarily limited to bipartite and pure states, thus aiding in the quantification of constraints for entanglement-sharing. These may find applications in studying many-body systems.


Author(s):  
Marek Gluza ◽  
Per Moosavi ◽  
Spyros Sotiriadis

Abstract Tomonaga-Luttinger liquids (TLLs) can be used to effectively describe one-dimensional quantum many-body systems such as ultracold atoms, charges in nanowires, superconducting circuits, and gapless spin chains. Their properties are given by two parameters, the propagation velocity and the Luttinger parameter. Here we study inhomogeneous TLLs where these are promoted to functions of position and demonstrate that they profoundly affect the dynamics: In general, besides curving the light cone, we show that propagation is no longer ballistically localized to the light-cone trajectories, different from standard homogeneous TLLs. Specifically, if the Luttinger parameter depends on position, the dynamics features pronounced spreading into the light cone, which cannot be understood via a simple superposition of waves as in the Huygens-Fresnel principle. This is the case for ultracold atoms in a parabolic trap, which serves as our main motivation, and we discuss possible experimental observations in such systems.


2008 ◽  
Vol 17 (supp01) ◽  
pp. 304-317
Author(s):  
Y. M. ZHAO

In this paper we review regularities of low-lying states for many-body systems, in particular, atomic nuclei, under random interactions. We shall discuss the famous problem of spin zero ground state dominance, positive parity dominance, collective motion, odd-even staggering, average energies, etc., in the presence of random interactions.


2021 ◽  
Vol 126 (11) ◽  
Author(s):  
Benjamin Geiger ◽  
Juan Diego Urbina ◽  
Klaus Richter
Keyword(s):  

2020 ◽  
Vol 125 (26) ◽  
Author(s):  
Norifumi Matsumoto ◽  
Kohei Kawabata ◽  
Yuto Ashida ◽  
Shunsuke Furukawa ◽  
Masahito Ueda

2020 ◽  
Vol 6 (51) ◽  
pp. eabd4699
Author(s):  
Mingyuan He ◽  
Chenwei Lv ◽  
Hai-Qing Lin ◽  
Qi Zhou

The realization of ultracold polar molecules in laboratories has pushed physics and chemistry to new realms. In particular, these polar molecules offer scientists unprecedented opportunities to explore chemical reactions in the ultracold regime where quantum effects become profound. However, a key question about how two-body losses depend on quantum correlations in interacting many-body systems remains open so far. Here, we present a number of universal relations that directly connect two-body losses to other physical observables, including the momentum distribution and density correlation functions. These relations, which are valid for arbitrary microscopic parameters, such as the particle number, the temperature, and the interaction strength, unfold the critical role of contacts, a fundamental quantity of dilute quantum systems, in determining the reaction rate of quantum reactive molecules in a many-body environment. Our work opens the door to an unexplored area intertwining quantum chemistry; atomic, molecular, and optical physics; and condensed matter physics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
T. M. Wintermantel ◽  
M. Buchhold ◽  
S. Shevate ◽  
M. Morgado ◽  
Y. Wang ◽  
...  

AbstractWhether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.


Sign in / Sign up

Export Citation Format

Share Document