Ground performance tests and evaluation of RF ion microthrusters for Taiji-1 satellite

Author(s):  
Jian-Wu He ◽  
Li Duan ◽  
Qi Kang ◽  

The “Taiji-1” satellite is a test satellite for the verification of those key technologies involved in the “Taiji Program in Space”, China’s space gravitational wave detection project; and the spacecraft drag-free control technology is one of its key technologies used to improve the microgravity level of spacecraft. Thus, a demand for a high-precision and continuously adjustable micronewton-level thrust has been proposed on the spacecraft micro-propulsion system. In allusion to such a task, a set of micronewton-level RF ion propulsion system was designed based on the principle of self-sustained discharge of RF plasma so as to conduct studies on the parameter optimization and engineering of RF ion thruster, and an engineering prototype of the micronewton-level continuously adjustable RF ion thruster was successfully developed to meet the design index requirements. The operating parameters have been solidified through further studies on the extreme operating conditions of the engineering prototype, and a series of ground simulation tests of space environment were successfully passed. The ground test and calibration experiment results of the micro-propulsion engineering prototype show that the engineering prototype has fully met the requirements of the Taiji-1 mission, thus having laid a solid foundation for the successful space verification of the key technologies for the “Taiji-1” satellite.

2014 ◽  
Vol 32 ◽  
pp. 1460342
Author(s):  
Si Ci Ong ◽  
Usman Ilyas ◽  
Rajdeep Singh Rawat

Zinc oxide, ZnO , a popular semiconductor material with a wide band gap (3.37 eV) and high binding energy of the exciton (60 meV), has numerous applications such as in optoelectronics, chemical/biological sensors, and drug delivery. This project aims to (i) optimize the operating conditions for growth of ZnO nanostructures using the chemical vapor deposition (CVD) method, and (ii) investigate the effects of coupling radiofrequency (RF) plasma to the CVD method on the quality of ZnO nanostructures. First, ZnO nanowires were synthesized using a home-made reaction setup on gold-coated and non-coated Si (100) substrates at 950 °C. XRD, SEM, EDX, and PL measurements were used for characterizations and it was found that a deposition duration of 10 minutes produced the most well-defined ZnO nanowires. SEM analysis revealed that the nanowires had diameters ranging from 30-100 mm and lengths ranging from 1-4 µm. In addition, PL analysis showed strong UV emission at 380 nm, making it suitable for UV lasing. Next, RF plasma was introduced for 30 minutes. Both remote and in situ RF plasma produced less satisfactory ZnO nanostructures with poorer crystalline structure, surface morphology, and optical properties due to etching effect of energetic ions produced from plasma. However, a reduction in plasma discharge duration to 10 minutes produced thicker and shorter ZnO nanostructures. Based on experimentation conducted, it is insufficient to conclude that RF plasma cannot aid in producing well-defined ZnO nanostructures. It can be deduced that the etching effect of energetic ions outweighed the increased oxygen radical production in RF plasma nanofabrication.


2007 ◽  
Vol 54 (6) ◽  
pp. 1981-1984 ◽  
Author(s):  
Alexander L. Bogorad ◽  
Justin J. Likar ◽  
Roman Herschitz

2005 ◽  
Vol 127 (1) ◽  
pp. 8-17 ◽  
Author(s):  
Milt Davis ◽  
Peter Montgomery

Testing of a gas turbine engine for aircraft propulsion applications may be conducted in the actual aircraft or in a ground-test environment. Ground test facilities simulate flight conditions by providing airflow at pressures and temperatures experienced during flight. Flight-testing of the full aircraft system provides the best means of obtaining the exact environment that the propulsion system must operate in but must deal with limitations in the amount and type of instrumentation that can be put on-board the aircraft. Due to this limitation, engine performance may not be fully characterized. On the other hand, ground-test simulation provides the ability to enhance the instrumentation set such that engine performance can be fully quantified. However, the current ground-test methodology only simulates the flight environment thus placing limitations on obtaining system performance in the real environment. Generally, a combination of ground and flight tests is necessary to quantify the propulsion system performance over the entire envelop of aircraft operation. To alleviate some of the dependence on flight-testing to obtain engine performance during maneuvers or transients that are not currently done during ground testing, a planned enhancement to ground-test facilities was investigated and reported in this paper that will allow certain categories of flight maneuvers to be conducted. Ground-test facility performance is simulated via a numerical model that duplicates the current facility capabilities and with proper modifications represents planned improvements that allow certain aircraft maneuvers. The vision presented in this paper includes using an aircraft simulator that uses pilot inputs to maneuver the aircraft engine. The aircraft simulator then drives the facility to provide the correct engine environmental conditions represented by the flight maneuver.


2013 ◽  
Author(s):  
Jason A. Cline ◽  
Jason Quenneville ◽  
Ramona S. Taylor ◽  
Timothy Deschenes ◽  
Matthew Braunstein ◽  
...  

2006 ◽  
Vol 178 (10-11) ◽  
pp. 2039-2060 ◽  
Author(s):  
CHIH-PENG CHEN ◽  
YEI-CHIN CHAO ◽  
CHIH-YUNG WU ◽  
JUNG-CHANG LEE ◽  
GUAN-BANG CHEN

1968 ◽  
Vol 72 (690) ◽  
pp. 490-497
Author(s):  
J. B. Taylor

Propulsion systems selected for commercial transports must provide efficient and reliable performance over a broad range of conditions. These aeroplanes are used over both short and long route segments, on non-standard days, and at a range of altitudes to meet air-line schedule requirements. This paper covers some of the design parameters that were considered in the integration of the induction system, secondary air system, jet nozzle and the basic turbojet gas generator for the SST. During recent years some of the most important gains in propulsion efficiency have resulted from the development of inlets, engines and exhaust nozzles which are matched over a broad range of operating conditions. An efficient propulsion system for a supersonic transport depends upon very close matching of these components. This, of course, requires a better understanding of the capabilities and limitations of each of these major components. For the supersonic transport, 50% or more of the gross weight will be comprised of propulsion system and fuel and less than 10% will be payload.


Sign in / Sign up

Export Citation Format

Share Document