Dirac–Kratzer problem with spin and pseudo-spin symmetries in curved space–time

Author(s):  
M. D. de Oliveira

In this work, the Dirac–Kratzer problem with spin and pseudo-spin symmetries in a deformed nucleus is analyzed. Thus, the Dirac equation in curved space–time was considered, with a line element given by [Formula: see text], where [Formula: see text] is a scalar potential, coupled to vector [Formula: see text] and tensor [Formula: see text] potentials. Defining the vector and scalar potentials of the Kratzer type and the tensor potential given by a term centrifugal-type term plus a term cubic singular at the origin, we obtain the Dirac spinor in a quasi-exact way and the eigenenergies numerically for the spin and pseudo-spin symmetries, so that these symmetries are removed due to the coupling of an Coulomb-type effective tensor potential coming from the curvature of space, however, when such potential is null the symmetries return. The probability densities were analyzed using graphs to compare the behavior of the system with and without spin and pseudo-spin symmetries.

1979 ◽  
Vol 20 (2) ◽  
pp. 409-413 ◽  
Author(s):  
R. G. McLenaghan ◽  
Ph. Spindel

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Faizuddin Ahmed

In this paper, we solve a generalized Klein-Gordon oscillator in the cosmic string space-time with a scalar potential of Cornell-type within the Kaluza-Klein theory and obtain the relativistic energy eigenvalues and eigenfunctions. We extend this analysis by replacing the Cornell-type with Coulomb-type potential in the magnetic cosmic string space-time and analyze a relativistic analogue of the Aharonov-Bohm effect for bound states.


The problem of deriving scalar potentials governing electromagnetic and gravitational perturbations of vacuum space-times is discussed. For the case of an algebraically special vacuum background space-time, explicit formulae for all quantities of physical interest are given in terms of derivaties of the scalar potential.


Author(s):  
Faizuddin Ahmed

The non-inertial effects on spin-0 scalar particle that interacts with scalar potentials of Cornell-type in cylindrical system and Coulomb-type in the magnetic cosmic string space-time using Kaluza-Klein theory is analyzed. We show that the energy eigenvalue and eigenfunction depend on the global parameters characterizing the space-time, and the gravitational analogue of the Aharonov-Bohm effect for bound states is observed.


1986 ◽  
Vol 33 (8) ◽  
pp. 2262-2266 ◽  
Author(s):  
J. Barcelos-Neto ◽  
Ashok Das

1998 ◽  
Vol 13 (16) ◽  
pp. 2857-2874
Author(s):  
IVER H. BREVIK ◽  
HERNÁN OCAMPO ◽  
SERGEI ODINTSOV

We discuss ε-expansion in curved space–time for asymptotically free and asymptotically nonfree theories. The existence of stable and unstable fixed points is investigated for fϕ4 theory and SU(2) gauge theory. It is shown that ε-expansion maybe compatible with aysmptotic freedom on special solutions of the RG equations in a special ase (supersymmetric theory). Using ε-expansion RG technique, the effective Lagrangian for covariantly constant gauge SU(2) field and effective potential for gauged NJL model are found in (4-ε)-dimensional curved space (in linear curvature approximation). The curvature-induced phase transitions from symmetric phase to asymmetric phase (chromomagnetic vacuum and chiral symmetry broken phase, respectively) are discussed for the above two models.


Sign in / Sign up

Export Citation Format

Share Document