Hertz─Bromwich─Debye─Whittaker─Penrose potentials in general relativity

The problem of deriving scalar potentials governing electromagnetic and gravitational perturbations of vacuum space-times is discussed. For the case of an algebraically special vacuum background space-time, explicit formulae for all quantities of physical interest are given in terms of derivaties of the scalar potential.

1988 ◽  
Vol 03 (13) ◽  
pp. 1227-1229 ◽  
Author(s):  
A. WIDOM ◽  
C.C. CHEN

Experimental probes of the anomalous magnetic moment of the muon, which are sufficiently sensitive to probe electro-weak unification contributions to (g−2), are also sufficiently sensitive to test an interesting feature of general relativity. The gravitational field of the earth produces a background space-time metric which will influence (g−2) measurements.


2006 ◽  
Vol 15 (05) ◽  
pp. 737-758 ◽  
Author(s):  
DONATO BINI ◽  
CHRISTIAN CHERUBINI ◽  
ANDREA GERALICO ◽  
ROBERT T. JANTZEN

The motion of massless spinning test particles is investigated using the Newman–Penrose formalism within the Mathisson–Papapetrou model extended to massless particles by Mashhoon and supplemented by the Pirani condition. When the "multipole reduction world line" lies along a principal null direction of an algebraically special vacuum space–time, the equations of motion can be explicitly integrated. Examples are given for some familiar space–times of this type in the interest of shedding some light on the consequences of this model.


R. d’E. Atkinson has shown that the path of a test particle, the light rays and the gravitational red shift predicted by general relativity for the case of the Schwarzschild metric may all be interpreted in terms of Euclidean space. By introducing the concept of a background space it is shown that Atkinson’s interpretation may be extended for the case of any finite static gravitating system. It is pointed out that the interpretation is applicable to any theory of gravitation in which the path of a test particle and the light rays are geodesics of the space-time metric.


Author(s):  
M. D. de Oliveira

In this work, the Dirac–Kratzer problem with spin and pseudo-spin symmetries in a deformed nucleus is analyzed. Thus, the Dirac equation in curved space–time was considered, with a line element given by [Formula: see text], where [Formula: see text] is a scalar potential, coupled to vector [Formula: see text] and tensor [Formula: see text] potentials. Defining the vector and scalar potentials of the Kratzer type and the tensor potential given by a term centrifugal-type term plus a term cubic singular at the origin, we obtain the Dirac spinor in a quasi-exact way and the eigenenergies numerically for the spin and pseudo-spin symmetries, so that these symmetries are removed due to the coupling of an Coulomb-type effective tensor potential coming from the curvature of space, however, when such potential is null the symmetries return. The probability densities were analyzed using graphs to compare the behavior of the system with and without spin and pseudo-spin symmetries.


Author(s):  
F. P. POULIS ◽  
J. M. SALIM

Motivated by an axiomatic approach to characterize space-time it is investigated a reformulation of Einstein's gravity where the pseudo-riemannian geometry is substituted by a Weyl one. It is presented the main properties of the Weyl geometry and it is shown that it gives extra contributions to the trajectories of test particles, serving as one more motivation to study general relativity in Weyl geometry. It is introduced its variational formalism and it is established the coupling with other physical fields in such a way that the theory acquires a gauge symmetry for the geometrical fields. It is shown that this symmetry is still present for the red-shift and it is concluded that for cosmological models it opens the possibility that observations can be fully described by the new geometrical scalar field. It is concluded then that this reformulation, although representing a theoretical advance, still needs a complete description of their objects.


2018 ◽  
Vol 64 (1) ◽  
pp. 18
Author(s):  
G. Gómez ◽  
I. Kotsireas ◽  
I. Gkigkitzis ◽  
I. Haranas ◽  
M.J. Fullana

Weintend to use the description oftheelectron orbital trajectory in the de Broglie-Bohm (dBB) theory to assimilate to a geodesiccorresponding to the General Relativity (GR) and get from itphysicalconclusions. ThedBBapproachindicatesustheexistenceof a non-local quantumfield (correspondingwiththequantumpotential), anelectromagneticfield and a comparativelyveryweakgravitatoryfield, togetherwith a translationkineticenergyofelectron. Ifweadmitthatthosefields and kineticenergy can deformthespace time, according to Einstein'sfield equations (and to avoidtheviolationoftheequivalenceprinciple as well), we can madethehypothesisthatthegeodesicsof this space-time deformation coincide withtheorbitsbelonging to thedBBapproach (hypothesisthat is coherentwiththestabilityofmatter). Fromit, we deduce a general equation that relates thecomponentsofthemetric tensor. Thenwe find anappropriatemetric for it, bymodificationofanexactsolutionofEinstein'sfield equations, whichcorresponds to dust in cylindricalsymmetry. Thefoundmodelproofs to be in agreementwiththebasicphysicalfeaturesofthehydrogenquantum system, particularlywiththeindependenceoftheelectronkineticmomentum in relationwiththeorbit radius. Moreover, themodel can be done Minkowski-like for a macroscopicshortdistancewith a convenientelectionof a constant. According to this approach, theguiding function ofthewaveontheparticlecould be identifiedwiththedeformationsofthespace-time and thestabilityofmatterwould be easilyjustifiedbythe null accelerationcorresponding to a geodesicorbit.


Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


Author(s):  
Mauro Carfora

A brief introduction to the scientic work of Stephen Hawking and to his contributions to our understanding of the interplay between general relativity and quantum theory.


Sign in / Sign up

Export Citation Format

Share Document