STUDY OF Z(N) GAUGE THEORIES ON A THREE-DIMENSIONAL PSEUDORANDOM LATTICE

1988 ◽  
Vol 03 (06) ◽  
pp. 1499-1518
Author(s):  
D. PERTERMANN ◽  
J. RANFT

Using the simplicial pseudorandom version of lattice gauge theory we study simple Z(n) gauge models in D=3 dimensions. In this formulation it is possible to interpolate continuously between a regular simplicial lattice and a pseudorandom lattice. Calculating average plaquette expectation values we look for the phase transitions of the Z(n) gauge models with n=2 and 3. We find all the phase transitions to be of first order, also in the case of the Z(2) model. The critical couplings increase with the irregularity of the lattice.

1984 ◽  
Vol 244 (1) ◽  
pp. 262-276 ◽  
Author(s):  
J. Ambjørn ◽  
P. Olesen ◽  
C. Peterson

1991 ◽  
Vol 05 (16n17) ◽  
pp. 2641-2673 ◽  
Author(s):  
MARK G. ALFORD ◽  
JOHN MARCH-RUSSELL

In this review we discuss the formulation and distinguishing characteristics of discrete gauge theories, and describe several important applications of the concept. For the abelian (ℤN) discrete gauge theories, we consider the construction of the discrete charge operator F(Σ*) and the associated gauge-invariant order parameter that distinguishes different Higgs phases of a spontaneously broken U(1) gauge theory. We sketch some of the important thermodynamic consequences of the resultant discrete quantum hair on black holes. We further show that, as a consequence of unbroken discrete gauge symmetries, Grand Unified cosmic strings generically exhibit a Callan-Rubakov effect. For non-abelian discrete gauge theories we discuss in some detail the charge measurement process, and in the context of a lattice formulation we construct the non-abelian generalization of F(Σ*). This enables us to build the order parameter that distinguishes the different Higgs phases of a non-abelian discrete lattice gauge theory with matter. We also describe some of the fascinating phenomena associated with non-abelian gauge vortices. For example, we argue that a loop of Alice string, or any non-abelian string, is super-conducting by virtue of charged zero modes whose charge cannot be localized anywhere on or around the string (“Cheshire charge”). Finally, we discuss the relationship between discrete gauge theories and the existence of excitations possessing exotic spin and statistics (and more generally excitations whose interactions are purely “topological”).


1984 ◽  
Vol 53 (7) ◽  
pp. 644-647 ◽  
Author(s):  
J. Polonyi ◽  
H. W. Wyld ◽  
J. B. Kogut ◽  
J. Shigemitsu ◽  
D. K. Sinclair

Sign in / Sign up

Export Citation Format

Share Document