EXPLORING THE ADIABATIC CONNECTION BETWEEN WEAK- AND STRONG-INTERACTION LIMITS IN DENSITY FUNCTIONAL THEORY

2001 ◽  
Vol 15 (10n11) ◽  
pp. 1672-1683 ◽  
Author(s):  
JOHN P. PERDEW ◽  
STEFAN KURTH ◽  
MICHAEL SEIDL

If the electron-electron repulsion in an atom or molecule were very weak, it could be treated by orbital-based perturbation theory. If this repulsion were very strong, it could be treated in a model of strict correlation. A simple interaction strength interpolation between these two limits, at fixed electron density, can describe the reality that lies between the extremes. By working entirely within a sophisticated density functional approximation, the meta-generalized gradient approximation, we find that the interpolation error is only about 0.1% for the exchange-correlation energy and about 4 kcal/mole = 0.17 eV for the atomization energy. We also find that real systems probably lie close to the radius of convergence of density functional perturbation theory.

2018 ◽  
Vol 6 (2) ◽  
pp. 53
Author(s):  
Salah Daoud ◽  
Rabie Mezouar ◽  
Abdelfateh Benmakhlouf

The present work aims to investigate the structural parameters and the piezoelectric coefficients of cubic zinc-blende Aluminum phosphide (AlP) under high pressure up to 21 GPa, using plane wave-pseudopotential (PW-PP) approach in the framework of the density functional theory (DFT) and the density functional perturbation theory (DFPT) with the generalized gradient approximation (GGA) for the exchange-correlation functional. The results obtained are analyzed and compared with other data of the literature. The structural parameters and the piezoelectric coefficients calculated here agree well with other data of the literature. We found also that both the direct and converse piezoelectric coefficients increase with increasing pressure up to 21 GPa. 


Open Physics ◽  
2010 ◽  
Vol 8 (5) ◽  
Author(s):  
Katalin Gaál-Nagy

AbstractI present a first-principles investigation of the vibrational properties of the chiral molecule 3-tert-butylcyclohexene. The vibrational density of states (vDOS) of the two existing conformers has been calculated ab initio within the framework of density-functional theory and density-functional perturbation theory, using both the local-density approximation and the generalized-gradient approximation for the exchange-correlation potential. The vDOS of the two conformers are very similar. The vDOS has been investigated with respect to contributions of the cyclohexene ring and the tert-butyl group and also regarding the localization of vibrational modes. Additionally, the eigendisplacements of characteristic modes of 3-tert-butylcyclohexene have been analyzed.


2019 ◽  
Author(s):  
S. Giarrusso ◽  
Paola Gori-Giorgi

We analyze in depth two widely used definitions (from the theory of conditional probablity amplitudes and from the adiabatic connection formalism) of the exchange-correlation energy density and of the response potential of Kohn-Sham density functional theory. We introduce a local form of the coupling-constant-dependent Hohenberg-Kohn functional, showing that the difference between the two definitions is due to a corresponding local first-order term in the coupling constant, which disappears globally (when integrated over all space), but not locally. We also design an analytic representation for the response potential in the strong-coupling limit of density functional theory for a model single stretched bond.<br>


2006 ◽  
Vol 84 (2) ◽  
pp. 115-120 ◽  
Author(s):  
G Y Gao ◽  
K L Yao ◽  
Z L Liu

First-principles calculations of the electronic structure are performed for cubic BaTbO3 using the plane-wave pseudopotential method within the framework of density functional theory and using the generalized gradient approximation for the exchange-correlation potential. Our calculations show that cubic BaTbO3 is metallic, and that this metallic character is mainly governed by the Tb 4f electrons and the hybridization between the Tb 5d and O 2p states. From the analysis of the density of states, band structure, and charge density contour, we find that the chemical bonding between Tb and O is covalent while that between Ba and TbO3 is ionic. PACS Nos.: 71.15.Mb, 71.20.-b


2019 ◽  
Vol 33 (21) ◽  
pp. 1950231
Author(s):  
Akbar Ali ◽  
Imad Khan ◽  
Zahid Ali ◽  
Fawad Khan ◽  
Iftikhar Ahmad

Structural, electronic, magnetic and mechanical properties of the perovskites BiFeO3 (BFO) and BaTiO3 (BTO) are investigated using density functional theory (DFT). Structural and mechanical parameters are calculated using generalized gradient approximation (GGA) and the results consistent with the available literature. The stable magnetic phases are achieved by optimizing total energies versus volumes of the cells in different magnetic configurations such as nonmagnetic (NM), ferromagnetic (FM) and antiferromagnetic (AFM). BTO is found to be NM while BFO favors G-type AFM (G-AFM) phase. The electronic properties are investigated using GGA, GGA with Hubbard potential (GGA[Formula: see text]+[Formula: see text]U) and modified Becke–Johnson (GGA-mBJ) exchange–correlation functionals. BFO is found to be a direct bandgap semiconductor having gap energy value 3.0 eV whereas BTO is an indirect semiconductor with bandgap energy 2.9 eV. Spin–orbit coupling effect is dominant in BFO due to the larger size of A-site cation. The electrical polarization shows that both the compounds are ferroelectric materials with significant spontaneous polarization of 144.1 [Formula: see text]C/cm2 and 27.9 [Formula: see text]C/cm2 for BFO and BTO respectively.


2010 ◽  
Vol 09 (06) ◽  
pp. 619-622
Author(s):  
BOTHINA A. HAMAD

In this work, a theoretical study of the structural, electronic and magnetic properties are presented for Mn 0.5 Ni 0.5 alloyed overlayer adsorbed on Cu (001) surface. The calculations were performed using the density functional theory (DFT) and the exchange-correlation potential was treated by the generalized gradient approximation (GGA). The system was fully relaxed except for the central layer, which yields to outward relaxations and inward Mn and Ni surface atoms, respectively in the ferromagnetic and antiferromagnetic configurations. The in-plane ferromagnetic configuration was found to be more stable than the antiferromagnetic one by 25 meV/atom. The local magnetic moments of Mn atoms were found to be about 4 μ B , whereas those of the Ni atoms where found to be 0.46 μ B .


2005 ◽  
Vol 475-479 ◽  
pp. 3103-3106 ◽  
Author(s):  
You Song Gu ◽  
Jian He ◽  
Zhen Ji ◽  
Xiao Yan Zhan ◽  
Yue Zhang ◽  
...  

The electronic structures and magnetic properties of Fe-Pt systems were calculated by CASTEP codes, which employed density functional theory, generalized gradient approximation (GGA), Perdew Burke Ernzerh exchange correlation, Pulay density-mixing scheme and Ultra Soft pseudo potential. The band structures and density of states (DOS) were calculated, together with band populations and magnetic properties. The calculated results of α-Fe show the validatiy of this method in predication magnetic properties. It is found that as the Pt concentration increases, Fe 4s and 3d electrons decrease while 4p electrons increase, and the magnetic moment of Fe atom increases. Pt atoms also contribute to the magnetic moment due to polarization. The calculated magnetization agrees with experimental values quite well.


Sign in / Sign up

Export Citation Format

Share Document