PATH INTEGRAL APPROACH TO A SINGLE POLYMER CHAIN WITH RANDOM MEDIA

2004 ◽  
Vol 18 (10n11) ◽  
pp. 1465-1478 ◽  
Author(s):  
CH. KUNSOMBAT ◽  
V. SA-YAKANIT

In this paper we consider the problem of a polymer chain in random media with finite correlation. We show that the mean square end-to-end distance of a polymer chain can be obtained using the Feynman path integral developed by Feynman for treating the polaron problem and successfuly applied to the theory of heavily doped semiconductor. We show that for short-range correlation or the white Gaussian model we derive the results obtained by Edwards and Muthukumar using the replica method and for long-range correlation we obtain the result of Yohannes Shiferaw and Yadin Y. Goldschimidt. The main idea of this paper is to generalize the model proposed by Edwards and Muthukumar for short-range correlation to finite correlation. Instead of using a replica method, we employ the Feynman path integral by modeling the polymer Hamiltonian as a model of non-local quadratic trial Hamiltonian. This non-local trial Hamiltonian is essential as it will reflect the translation invariant of the original Hamiltonian. The calculation is proceeded by considering the differences between the polymer propagator and the trial propagator as the first cumulant approximation. The variational principle is used to find the optimal values of the variational parameters and the mean square end-to-end distance is obtained. Several asymptotic limits are considered and a comparison between this approaches and replica approach will be discussed.

2005 ◽  
Vol 19 (29) ◽  
pp. 4381-4387
Author(s):  
CHERDSAK KUNSOMBAT ◽  
VIRULH SA-YAKANIT

In this paper we consider the model of a flexible polymer chain embedded in a quenched random medium with long-range disorder correlations. Using the Feynman path integral approach we show that for the case of long-range quadratic correlations, we obtain an analytical result. The result is [Formula: see text], where 〈R2〉 is the mean square end-to-end distance of the polymer chain, ξ is the correlation length of disorder, Δ is an unknown parameter, b is the Kuhn step length, ρ is the density of random obstacles and N is the number of links. It is shown that for a polymer chain in a random media with long-range quadratic correlations, where ρ is not too high, the behavior of the polymer chain is like that of a free chain. This result agrees with the calculation using the replica method. However, in a medium where ρ is very high, the variation of the mean square end-to-end distance with disorder and its distance depending on ρ are found in our approach.


1997 ◽  
Vol 12 (20) ◽  
pp. 1455-1463 ◽  
Author(s):  
G. S. Djordjević ◽  
B. Dragovich

The Feynman path integral in p-adic quantum mechanics is considered. The probability amplitude [Formula: see text] for one-dimensional systems with quadratic actions is calculated in an exact form, which is the same as that in ordinary quantum mechanics.


1970 ◽  
Vol 2 (10) ◽  
pp. 4283-4287 ◽  
Author(s):  
John T. Marshall ◽  
M. S. Chawla

Sign in / Sign up

Export Citation Format

Share Document