THERMODYNAMICS OF LOW-DENSITY ELECTRON GAS ON HIGHLY DISORDERED ONE-DIMENSIONAL HOST LATTICE

2004 ◽  
Vol 18 (20n21) ◽  
pp. 2863-2876
Author(s):  
V. SLAVIN ◽  
A. SLUTSKIN

The low-temperature thermodynamics of a one-dimensional electron gas on a disordered lattice, which comes to existence when the inter-electron distances exceed noticeably the inter-site ones, has been studied. An efficient computer procedure, based on the presentation of the partition function as a product of random transfer-matrixes, has been developed for calculations of thermodynamic characteristics of the system under consideration. The lattice structures were varied from completely chaotic up to the strictly regular one. It has been established that for any degree of disorder the entropy and heat capacity of the system tend to zero linearly as the temperature is reduced. The conclusion about the gapless character of the elementary excitations spectrum has been made. An instability of one-dimensional electron gas on a disordered lattice has been revealed: under conditions of vanishingly small disordering of the lattice, the long-range order in the systems under consideration is broken by frustrations that are one-dimensional analogues of the frustrations in two- and three-dimensional spin glasses.

1999 ◽  
Vol 60 (23) ◽  
pp. 15654-15659 ◽  
Author(s):  
G. Fano ◽  
F. Ortolani ◽  
A. Parola ◽  
L. Ziosi

Sign in / Sign up

Export Citation Format

Share Document