EFFECT OF STORAGE TIME AND CONCENTRATION ON STRUCTURE OF REGENERATED SILK FIBROIN SOLUTION

2006 ◽  
Vol 20 (25n27) ◽  
pp. 3878-3883 ◽  
Author(s):  
FANG XIE ◽  
HUILI SHAO ◽  
XUECHAO HU

Concentrated regenerated silk fibroin (RSF) aqueous solutions with concentration close to that of the native silk fibroin (15.5%, 25.5% and 31%) were prepared. The effect of storage time and concentration on the conformational transition of the concentrated RSF aqueous solution was studied by Raman spectroscopy and circular dichroism (CD) spectroscopy. At the same time, the conformational change of RSF aqueous solution in flowing state was also investigated. It was found that the conformation of silk fibroin was changed gradually from random coil/α-helix to β-sheet structure during the storage. And the conformational transformation was accelerated with the increasing of the RSF aqueous solution concentration. When the solution was in flowing state, the conformational transformation was also accelerated.

2011 ◽  
Vol 311-313 ◽  
pp. 1653-1656 ◽  
Author(s):  
Fang Xie ◽  
Hao Liang

The thermal properties and rheological behavior of concentrated regenerated silk fibroin aqueous solution from 15% to 37% was investigated by differential scanning calorimetry (DSC) and rheometer. Also the conformation of solutions was characterized by Raman spectra. It was discovered that the major endothermic peak in the DSC curves shifted toward the lower temperature region with increasing the concentration. This behavior suggests increasing the concentration can accelerate conformational transition of silk fibroin from random coil and α-helix to β-sheet structure. In addition, it was found that the viscosity of solution increased with increasing concentration in favor of spinning.


2021 ◽  
Author(s):  
Ben Jia ◽  
Lan Jia ◽  
Jingxin Zhu

Abstract In this work, the potential application of the fluorescence dye Thioflavin-T (ThT), which can specifically bind to amyloid, as a powerful tool for monitoring secondary structure transitions of silk fibroin (SF) induced by pH was examined. Results showed that ThT emission intensities substantially increased when pH decreased from 6.8 to 4.8. This increase may be due to conformational transitions from random coil to β-sheet. The morphology and secondary structure of SF were also investigated via TEM, AFM and circular dichroism spectroscopy. The information obtained herein can be utilized not only for the development of convenient and efficient noninvasive method for monitoring the assembly behavior of SF in aqueous solution but also for in vitro fluorescence imaging.


1989 ◽  
Vol 43 (7) ◽  
pp. 1269-1272 ◽  
Author(s):  
Siding Zheng ◽  
Guanxian Li ◽  
Wenhuo Yao ◽  
Tongyin Yu

The mechanical denaturation process of silk fibroin is examined by Raman spectroscopy. The fresh silk fibroins from the middle gland of mature silkworms are drawn to various ratios on a tensile tester ( R = ldrawn/ linitial, where l is length) and their conformations are measured with Raman spectroscopy. Undrawn silk fibroin is mainly in the random coil structure with some α-helical conformation, the characteristic bands appearing at 1252 and 1660 (random coil) and at 942, 1106, and 1270 cm−1 (α-helix). When the samples are drawn up to R = 4 at an extension rate of 500 mm/min, two peaks at 1233 cm−1 (the amide III band) and 1085 cm−1 appear; it is shown that the β-sheet conformation is then formed. With an increase in drawing ratios, the intensities of these β-sheet bands increase and those of the random coil and α-helical bands decrease gradually. These changes indicate that, under the action of stress, the conformation of fibroin is altered from random coil and α-helix to β-sheet structures. This result is quite similar to the results achieved by the spinning of the silkworm. The effect of the water content in liquid silk on this conformational transition process is revealed and discussed.


1968 ◽  
Vol 24 (9) ◽  
pp. 449-450 ◽  
Author(s):  
Kiyoshi Hirabayashi ◽  
Hiroshi Ishikawa

2002 ◽  
Vol 93 (4) ◽  
pp. 1377-1383 ◽  
Author(s):  
Takaya Tsueshita ◽  
Salil Gandhi ◽  
Hayat Önyüksel ◽  
Israel Rubinstein

The purpose of this study was to elucidate the interactions between pituitary adenylate cyclase-activating peptide (PACAP)-(1—38) and phospholipids in vitro and to determine whether these phenomena modulate, in part, the vasorelaxant effects of the peptide in the intact peripheral microcirculation. We found that the critical micellar concentration of PACAP-(1—38) was 0.4–0.9 μM. PACAP-(1—38) significantly increased the surface tension of a dipalmitoylphosphatidylcholine monolayer and underwent conformational transition from predominantly random coil in saline to α-helix in the presence of distearoyl-phosphatidylethanolamine-polyethylene glycol (molecular mass of 2,000 Da) sterically stabilized phospholipid micelles (SSM) ( P < 0.05). Using intravital microscopy, we found that aqueous PACAP-(1—38) evoked significant concentration-dependent vasodilation in the intact hamster cheek pouch that was significantly potentiated when PACAP-(1—38) was associated with SSM ( P < 0.05). The vasorelaxant effects of aqueous PACAP-(1—38) were mediated predominantly by PACAP type 1 (PAC1) receptors, whereas those of PACAP-(1—38) in SSM predominantly by PACAP/vasoactive intestinal peptide type 1 and 2 (VPAC1/VPAC2) receptors. Collectively, these data indicate that PACAP-(1—38) self-associates and interacts avidly with phospholipids in vitro and that these phenomena amplify peptide vasoactivity in the intact peripheral microcirculation.


Biopolymers ◽  
2008 ◽  
Vol 89 (6) ◽  
pp. 497-505 ◽  
Author(s):  
Xin-Gui Li ◽  
Li-Ya Wu ◽  
Mei-Rong Huang ◽  
Hui-Li Shao ◽  
Xue-Chao Hu

RSC Advances ◽  
2015 ◽  
Vol 5 (119) ◽  
pp. 98553-98558 ◽  
Author(s):  
Chen Liu ◽  
Jiaqi Sun ◽  
Min Shao ◽  
Bin Yang

Centrifugal spinning converts the conformation of silk fibroin from random coil to β-sheet more easily than electrospinning, which results in fiber differences on secondary structures, orientation and thermal properties.


2011 ◽  
Vol 175-176 ◽  
pp. 170-175 ◽  
Author(s):  
Rong Liu ◽  
Feng Zhang ◽  
Bao Qi Zuo ◽  
Huan Xiang Zhang

Electrospun Silk-Fibroin (SF) mats were fabricated by electrospinning with regenerated Bombyx mori silk-fibroin/formic acid solutions. After spinning, the water soluble and mechanical properties of pure fibroin nanofibers were poor. So electrospun SF mats were crosslinked with N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC), a low cell cytotoxicity crosslinking agent, and N-hydroxysuccinimide (NHS), which can increase the reaction rate. The scanning electron microscope images indicated that the diameter of fibers increased with crosslinking reaction. When EDC/NHS reached to 7.5wt.%, the diameter of fibers achieved the maximum. The mechanical test showed that tensile strength enhanced after crosslinking with EDC/ NHS. While EDC/NHS reached to 7.5wt %, the rupture strength reached to (38.31±5.30) Mpa, and the breaking elongation ratio reached to (182.00±31.27) %. FTIR results showed the the proportion of β-sheet increased while random coil and α-helix decreased after treatment.


2013 ◽  
Vol 28 (20) ◽  
pp. 2897-2902 ◽  
Author(s):  
Yuan Jin ◽  
Yaopeng Zhang ◽  
Yichun Hang ◽  
Huili Shao ◽  
Xuechao Hu

Abstract


2007 ◽  
Vol 342-343 ◽  
pp. 813-816 ◽  
Author(s):  
Lim Jeong ◽  
Kuen Yong Lee ◽  
Won Ho Park

Nonwoven nanofiber matrices were prepared by electrospinning a solution of silk fibroin (SF) dissolved either in formic acid or in 1,1,1,3,3,3-hexafluoro-2-isopropyl alcohol (HFIP). The mean diameter of the electrospun nanofibers prepared from SF dissolved in formic acid was 80 nm with a unimodal size distribution, which was smaller than those prepared from HFIP (380 nm). SF nanofibers were then treated with an aqueous methanol solution, and structural changes due to solvent-induced crystallization of SF were investigated using IR and 13C solid-state CP/MAS NMR spectroscopy. SF nanofibers prepared from formic acid were found to have a higher proportion of β-sheet conformations than those prepared from HFIP. Methanol treatment provided a fast and effective means to alter the secondary structure of both types of SF nanofibers from a random coil form to a β-sheet form. As demonstrated in the present study, this approach to controlling the dimensions and secondary structure of proteins using various solvents may be useful for the design and tailoring of materials for biomedical applications, especially for tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document