INVESTIGATION OF FRETTING FATIGUE BEHAVIOR OF TI811 ALLOY AT ELEVATED TEMPERATURE

2008 ◽  
Vol 22 (31n32) ◽  
pp. 5489-5494
Author(s):  
XIAO-HUA ZHANG ◽  
DAO-XIN LIU

The fretting fatigue behavior of the Ti 811titanium alloy, as influenced by temperature, slip amplitude, and contact pressure, was investigated using a high-frequency fatigue machine and a home-made high-temperature apparatus. The fretting fatigue failure mechanisms were studied by observing the fretting surface morphology features. The results show that the sensitivity to fretting fatigue is high at both 350°C and 500°C. The higher the temperature is, the more sensitive the alloy is to fretting fatigue failure. Creep is an important factor that influences the fretting fatigue failure process at elevated temperature. The fretting fatigue life of the Ti 811 alloy does not change in a monotonic way as the slip amplitude and contact pressure increase. This is due to the fact that the slip amplitude affects the action of fatigue and wear in the fretting process, and the nominal contact pressure affects the distribution and concentration of the stress and the amplitude of fretting slip at the contact surface, and thus further influences the crack initiation probability and the driving force for propagation.

2011 ◽  
Vol 2 (1) ◽  
pp. 2-11
Author(s):  
R. Hojjati Talemi ◽  
M. Soori ◽  
M. Abdel Wahab ◽  
Patrick De Baets

t Fretting fatigue damage occurs in contacting parts when they are subjected to fluctuating loadingsand sliding movements at the same time. This phenomenon may occur in many applications such asbearings/ shafts, bolted and riveted connections, steel cables, and steam and gas turbines. In this paper,the effect of elevated temperature on fretting fatigue life of Al7075-T6 is investigated using a new device forfretting fatigue tests with variable crank shaft mechanism. Also a finite element modeling method was usedto estimate crack propagation lifetime in aluminum alloy, Al7075-T6 specimens at elevated temperatureunder fretting condition. In this method, shear and normal stresses that are caused by contact load areupdated at each crack growth increment. Finally, a comparison between the experimental and numericalresults is done in order to evaluate the FE simulation.Department of mechanical engineering, Islamic Azad University, Takestan Branch, Takestan, IranThe experimental results show that: (i) fretting fatigue life of the material increases with temperature up to350°C by 180% for low stresses and decreases by 40% for high stresses, (ii) this fashion of variation offretting fatigue life versus temperature is believed to be due to degradation of material properties whichoccurs by overaging and wear resistance increase due to oxidation of aluminum alloy. While overaginggives rise to degradation of mechanical strength of material and hence the reduction of its fretting fatiguelife, surface oxidation of the specimens brings some improvement of fatigue behavior of the material.Metallurgical examination of the specimens reveals that temperature results in precipitation of impurities ofal-7075-T6. The size of precipitated impurities and their distances gets bigger as temperature increases.This could be a reason for material degradation of specimens which are exposed to heating for longer timeduration.


2021 ◽  
Vol 73 (6) ◽  
pp. 922-928
Author(s):  
Ziao Huang ◽  
Xiaoshan Liu ◽  
Guoqiu He ◽  
Zhiqiang Zhou ◽  
Bin Ge ◽  
...  

Purpose This study aims to understand the multiaxial fretting fatigue, wear and fracture characteristics of 35CrMoA steel under the elliptical loading path. Design/methodology/approach By keeping the contact pressure and torsional shear cyclic stress amplitude unchanged; the axial cyclic stress amplitude varied from 650 MPa to 850 MPa. The fretting fatigue test was carried out on MTS809 testing machine, and the axial cyclic strain response and fatigue life of the material were analyzed. The fretting zone and fracture surface morphology were observed by scanning electron microscope. The composition of wear debris was detected by energy dispersive X-ray spectrometer. Findings In this study, with the increase of axial stress amplitude, 35CrMoA steel will be continuously softened, and the cyclic softening degree increases. The fretting fatigue life decreases unevenly. The fretting scars in the stick region are elongated in the axial direction. The area of fracture crack propagation zone decreases. In addition, the results indicate that wear debris in the slip region is spherical and has higher oxygen content. Originality/value There were few literatures about the multiaxial fretting fatigue behavior of 35CrMoA steel, and most scholars focused on the contact pressure. This paper reveals the effect of axial cyclic stress on fretting fatigue and wear of 35CrMoA steel under the elliptical loading path.


2017 ◽  
Vol 24 (Supp02) ◽  
pp. 1850032
Author(s):  
F. ABBASI ◽  
G. H. MAJZOOBI

In this study, the effect of contact pressure on fretting fatigue behavior of Al7075-T6 under cyclic normal contact loading is investigated. It is found that fretting fatigue life for the case of cyclic contact load was significantly less than that for constant contact load at the same axial and contact load levels, particularly for High Cycle Fatigue (HCF) conditions. The results showed that the fretting fatigue life decreased monotonically with the increase in normal contact load for all axial stresses. Examination of the fretting scars was performed using optical microscopy and numerical simulation was carried out using commercial finite element (FE) codes ABAQUS[Formula: see text] and FRANC2D/L[Formula: see text] to calculate the crack propagation life. The crack initiation life was calculated by a combination of numerical and experimental results. Finally, the FE simulation was validated by a comparison between the numerical crack growth rate and the experimental measurement using replica.


2021 ◽  
Vol 30 (4) ◽  
pp. 2822-2831
Author(s):  
V. Shiva ◽  
Sunil Goyal ◽  
N. L. Parthasarathi ◽  
C. R. Das ◽  
R. Kannan ◽  
...  

2008 ◽  
Vol 587-588 ◽  
pp. 971-975 ◽  
Author(s):  
M. Buciumeanu ◽  
A.S. Miranda ◽  
F.S. Silva

The main objective of this work was to study the influence of the wear properties of two commercial alloys (CK45 and Al7175) on their fretting fatigue behavior. It is verified the effect of material local degradation by wear on a fatigue strength reduction factor, namely the stress concentration factor, and on the overall fretting fatigue life of these materials. The fretting fatigue phenomenon is a synergetic effect between wear and fatigue. It is dependent on both the fatigue and the wear properties of the materials. Material properties promoting an increase in wear resistance should enhance fretting fatigue life.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4620
Author(s):  
Fan You ◽  
Surong Luo ◽  
Jianlan Zheng ◽  
Kaibin Lin

Using recycled aggregate in concrete is effective in recycling construction and demolition waste. It is of critical significance to understand the fatigue properties of recycled aggregate concrete (RAC) to implement it safely in structures subjected to repeated or fatigue load. In this study, a series of fatigue tests was performed to investigate the compressive fatigue behavior of RAC. The performance of interfacial transition zones (ITZs) was analyzed by nanoindentation. Moreover, the influence of ITZs on the fatigue life of RAC was discussed. The results showed that the fatigue life of RAC obeyed the Weibull distribution, and the S-N-p equation could be obtained based on the fitting of Weibull parameters. In the high cycle fatigue zone (N≥104), the fatigue life of RAC was lower than that of natural aggregate concrete (NAC) under the same stress level. The fatigue deformation of RAC presented a three-stage deformation regularity, and the maximum deformation at the point of fatigue failure closely matched the monotonic stress-strain envelope. The multiple ITZs matched the weak areas of RAC, and the negative effect of ITZs on the fatigue life of RAC in the high cycle fatigue zone was found to be greater than that of NAC.


2009 ◽  
Vol 54 (3) ◽  
pp. 1115-1118 ◽  
Author(s):  
Dong-Hyong Lee ◽  
Seok-Jin Kwon ◽  
Won-Hee You ◽  
Jae-Boong Choi ◽  
Young-Jin Kim

Sign in / Sign up

Export Citation Format

Share Document