DRIVEN TRANSITIONS AT THE ONSET OF ERGODICITY BREAKING IN GAUGE-INVARIANT COMPLEX NETWORKS

2010 ◽  
Vol 24 (30) ◽  
pp. 5995-6011 ◽  
Author(s):  
ADRIANO BARRA

In the last few years, the statistical mechanics of spin glasses has become one of the major frameworks for analyzing the macroscopical equilibrium properties of complex systems starting from the microscopical dynamics of their components. Recently, many advances in its rigorous formulation without the replica trick have been achieved, highlighting the importance of this field of research in our understanding of complex systems. In this framework we analyze the critical behavior of a Poissonian diluted network with random competitive interactions among gauge-invariant dichotomic variables pasted on the nodes (i.e., a suitable version of the Viana–Bray diluted spin glass). The model is described by an infinite series of order parameters (the multioverlaps) and has two degrees of freedom: the temperature (which can be thought of as the noise level) and the connectivity (the averaged number of links per node in the underlying network). In this paper, we show that there are not several transition lines, one for every order parameter, as a naive approach would suggest but just one corresponding to ergodicity breaking. We explain this scenario within a novel and simple mathematical technique: we show the existence of a driving mechanism such that, as the first order parameter (the two-replica overlap) becomes different from zero due to a real second order phase transition, it enforces all the other multioverlaps toward positive values thanks to the strong correlations which develop among themselves and the two-replica overlap at the critical line. These correlations are ultimately related — within our framework — to the breaking of the gauge invariance of the Boltzmann state at the boundary of the ergodic region. A discussion on the structure of the free energy, fundamental macroscopical observable by which the whole thermodynamic can be achieved, is also presented.

2008 ◽  
Vol 08 (03n04) ◽  
pp. L341-L348 ◽  
Author(s):  
ADRIANO BARRA

With the aim of describing a general benchmark for several complex systems, we analyze, by means of statistical mechanics, a sparse network with random competitive interactions among dichotomic variables pasted on the nodes. The model is described by an infinite series of order parameters (the multi-overlaps) and has two tunable degrees of freedom: the noise level and the connectivity (the averaged number of links). We show that there are no multiple transition lines, one for every order parameter, as a naive approach would suggest, but just one corresponding to ergodicity breaking. We explain this scenario within a novel and simple mathematical technique via a driving mechanism such that, as the first order parameter (the two replica overlap) becomes different from zero due to a real second order phase transition (with properly associated diverging rescaled fluctuations), it enforces all the other multi-overlaps toward positive values thanks to the strong correlations which develop among themselves and the two replica overlap at the critical line.


Author(s):  
Daniel L. Stein ◽  
Charles M. Newman

This chapter considers how spin glass science fits into the larger area of complexity studies. It discusses three landmark papers in the field of complexity, by Warren Weaver, Herb Simon, and Phil Anderson, respectively, and examines how the ideas they introduced might relate to the current understanding of spin glasses. It also takes a brief look at recent developments, in particular various proposals for measures of complexity, and considers how they might illuminate some features of spin glasses. It concludes by asking whether spin glasses can still be thought of as “complex systems,” and in so doing introduces a proposal for a kind of “new complexity” as it relates to spin glasses.


2020 ◽  
Vol 35 (27) ◽  
pp. 2050230 ◽  
Author(s):  
T. Grandou ◽  
R. Hofmann

Standard functional manipulations have been proven to imply a remarkable property satisfied by the fermionic Green’s functions of QCD and dubbed effective locality. Resulting from a full gauge invariant summation of the gauge field degrees of freedom, effective locality is a non-perturbative property of QCD. This unexpected result has lead to suspect that the famous Gribov copy problem had been somewhat overlooked. It is argued that it is not so. The analysis is conducted in the strong coupling limit, relevant to the Gribov problem.


Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 290 ◽  
Author(s):  
Ivan Agullo ◽  
Javier Olmedo ◽  
Vijayakumar Sreenath

This paper presents a computational algorithm to derive the theory of linear gauge invariant perturbations on anisotropic cosmological spacetimes of the Bianchi I type. Our code is based on the tensor algebra packages xTensor and xPert, within the computational infrastructure of xAct written in Mathematica. The algorithm is based on a Hamiltonian, or phase space formulation, and it provides an efficient and transparent way of isolating the gauge invariant degrees of freedom in the perturbation fields and to obtain the Hamiltonian generating their dynamics. The restriction to Friedmann–Lemaître–Robertson–Walker spacetimes is straightforward.


2018 ◽  
Vol 192 ◽  
pp. 00001
Author(s):  
Adriano Di Giacomo

The status is reviewed of the lattice studies of confinement by dual superconductivity of QCD vacuum. Progress is made by proving that the existence and the creation of a monopole are gauge invariant concepts. This proof fully legitimates an existing order parameter, and with it the evidence it provides of monopole condensation in the confining vacuum.


Sign in / Sign up

Export Citation Format

Share Document