MOLECULAR DYNAMICS SIMULATION OF PULSED LASER ABLATION

2011 ◽  
Vol 25 (04) ◽  
pp. 543-550 ◽  
Author(s):  
XIU-FANG GONG ◽  
GONG-XIAN YANG ◽  
PENG LI ◽  
YIN WANG ◽  
XI-JING NING

We have developed a simplified molecular-dynamical model for simulating ablation of solid surfaces by laser pulses, and specifically investigated expansion of Cu cloud in vacuum vaporized on the surface, showing that the angular distributions of the plume depend on the shape of the laser spot on the surface. In particular, experimentally observed flipover effects have been obtained, and an adiabatic constant determined from our simulations via an adiabatic expansion model agrees well with previous measurements.

2012 ◽  
Vol 500 ◽  
pp. 351-356 ◽  
Author(s):  
Zeng Qiang Li ◽  
Jun Wang ◽  
Qi Wu

The mechanism of ultrashort pulsed laser ablation of polycrystalline diamond (PCD) is investigated using molecular dynamics simulation. The simulation model provides a detailed atomic-level description of the laser energy deposition to PCD specimens and is verified by an experiment using 300 fs laser irradiation of a PCD sample. It is found that grain boundaries play an important role in the laser ablation. Melting starts from the grain boundaries since the atoms in these regions have higher potential energy and are melted more easily than the perfect diamond. Non-homogeneous melting then takes place at these places, and the inner crystal grains melt more easily in liquid surroundings presented by the melting grain boundaries. Moreover, the interplay of the two processes, photomechanical spallation and evaporation, are found to account for material removal in ultrashort pulsed laser ablation of PCD.


Sign in / Sign up

Export Citation Format

Share Document