scholarly journals ANALYTICAL MECHANICS IN STOCHASTIC DYNAMICS: MOST PROBABLE PATH, LARGE-DEVIATION RATE FUNCTION AND HAMILTON–JACOBI EQUATION

2012 ◽  
Vol 26 (24) ◽  
pp. 1230012 ◽  
Author(s):  
HAO GE ◽  
HONG QIAN

Analytical (rational) mechanics is the mathematical structure of Newtonian deterministic dynamics developed by D'Alembert, Lagrange, Hamilton, Jacobi, and many other luminaries of applied mathematics. Diffusion as a stochastic process of an overdamped individual particle immersed in a fluid, initiated by Einstein, Smoluchowski, Langevin and Wiener, has no momentum since its path is nowhere differentiable. In this exposition, we illustrate how analytical mechanics arises in stochastic dynamics from a randomly perturbed ordinary differential equation dXt = b(Xt)dt+ϵdWt, where Wt is a Brownian motion. In the limit of vanishingly small ϵ, the solution to the stochastic differential equation other than [Formula: see text] are all rare events. However, conditioned on an occurrence of such an event, the most probable trajectory of the stochastic motion is the solution to Lagrangian mechanics with [Formula: see text] and Hamiltonian equations with H(p, q) = ‖p‖2+b(q)⋅p. Hamiltonian conservation law implies that the most probable trajectory for a "rare" event has a uniform "excess kinetic energy" along its path. Rare events can also be characterized by the principle of large deviations which expresses the probability density function for Xt as f(x, t) = e-u(x, t)/ϵ, where u(x, t) is called a large-deviation rate function which satisfies the corresponding Hamilton–Jacobi equation. An irreversible diffusion process with ∇×b≠0 corresponds to a Newtonian system with a Lorentz force [Formula: see text]. The connection between stochastic motion and analytical mechanics can be explored in terms of various techniques of applied mathematics, for example, singular perturbations, viscosity solutions and integrable systems.

2006 ◽  
Vol 18 (06) ◽  
pp. 619-653 ◽  
Author(s):  
WOJCIECH DE ROECK ◽  
CHRISTIAN MAES

We introduce a quantum stochastic dynamics for heat conduction. A multi-level subsystem is coupled to reservoirs at different temperatures. Energy quanta are detected in the reservoirs allowing the study of steady state fluctuations of the entropy dissipation. Our main result states a symmetry in its large deviation rate function.


2011 ◽  
Vol 13 (02) ◽  
pp. 235-268 ◽  
Author(s):  
D. A. GOMES ◽  
A. O. LOPES ◽  
J. MOHR

We present the rate function and a large deviation principle for the entropy penalized Mather problem when the Lagrangian is generic (it is known that in this case the Mather measure μ is unique and the support of μ is the Aubry set). We assume the Lagrangian L(x, v), with x in the torus 𝕋N and v∈ℝN, satisfies certain natural hypotheses, such as superlinearity and convexity in v, as well as some technical estimates. Consider, for each value of ϵ and h, the entropy penalized Mather problem [Formula: see text] where the entropy S is given by [Formula: see text], and the minimization is performed over the space of probability densities μ(x, v) on 𝕋N×ℝN that satisfy the discrete holonomy constraint ∫𝕋N×ℝN φ(x + hv) - φ(x) dμ = 0. It is known [17] that there exists a unique minimizing measure μϵ, h which converges to a Mather measure μ, as ϵ, h→0. In the case in which the Mather measure μ is unique we prove a Large Deviation Principle for the limit lim ϵ, h→0ϵ ln μϵ, h(A), where A ⊂ 𝕋N×ℝN. In particular, we prove that the deviation function I can be written as [Formula: see text], where ϕ0 is the unique viscosity solution of the Hamilton – Jacobi equation, [Formula: see text]. We also prove a large deviation principle for the limit ϵ→ 0 with fixed h. Finally, in the last section, we study some dynamical properties of the discrete time Aubry–Mather problem, and present a proof of the existence of a separating subaction.


Sign in / Sign up

Export Citation Format

Share Document