STABILITY OF SISO NONLINEAR SYSTEMS WITH PARAMETERS DISTURBANCES

2012 ◽  
Vol 26 (25) ◽  
pp. 1246008
Author(s):  
OLGA SHPILEVAYA

We study single-input single-output (SISO) control systems with the rapid piecewise-smooth parameters disturbances. The system dynamics are described by switched system models. The system output is regulated with the help of the nonlinear astatic controller with parameters which depend on some disturbance properties. The system stability is studied by second Lyapunov method.

2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Jesús U. Liceaga-Castro ◽  
Irma I. Siller-Alcalá ◽  
Eduardo Liceaga-Castro ◽  
Luis A. Amézquita-Brooks

Via several cases of study it is shown that a passive multivariable linear control system, contrary to its single input single output counterpart, may not be robust. Moreover, it is shown that lack of robustness can be exposed via the multivariable structure function.


Author(s):  
Erdinc Sahin ◽  
Mustafa Sinasi Ayas

Abstract Control of chaos generally refers to realize a desired behavior of chaotic system output and its states. In this manner, we design a fractional high-order differential feedback controller (FHODFC) to increase tracking performance of a nonlinear system output and its differentials for a desired trajectory signal. The proposed controller is based on fractional calculus and high-order extracted differentials of error signal. The suggested fractional approach is applied to a single-input–single-output affine Duffing-Holmes dynamical system in matlab/simulink environment. Duffing-Holmes system is analyzed for two different problems: estimation and control problems. The simulation results clearly demonstrate superior dynamic behavior of the FHODFC compared to the classical high-order differential feedback controller (HODFC) version for both estimation and control problems.


AIChE Journal ◽  
2000 ◽  
Vol 46 (8) ◽  
pp. 1616-1631 ◽  
Author(s):  
Karel Stryczek ◽  
Mario Laiseca ◽  
Coleman Brosilow ◽  
Marshall Leitman

Sign in / Sign up

Export Citation Format

Share Document