A MULTIPLE RICCATI EQUATIONS RATIONAL-EXPONENT METHOD AND ITS APPLICATION TO WHITHAM–BROER–KAUP EQUATION

2013 ◽  
Vol 27 (06) ◽  
pp. 1350014 ◽  
Author(s):  
QING LIU ◽  
ZI-HUA WANG ◽  
DONG-LI JIA

According to two dependent solutions to a generalized Riccati equation together with the equation itself, a multiple Riccati equations rational-exponent method is proposed and applied to Whitham–Broer–Kaup equation. It shows that this method is a more concise and efficient approach and can uniformly derive many types of combined solutions to nonlinear partial differential equations.

2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Bülent Kiliç ◽  
Hasan Bulut

A new method with a different auxiliary equation from the Riccati equation is used for constructing exact travelling wave solutions of nonlinear partial differential equations. The main idea of this method is to take full advantage of a different auxilliary equation from the Riccati equation which has more new solutions. More new solitary solutions are obtained for the RLW Burgers and Hirota Satsuma coupled equations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Robert Stegliński

Abstract The aim of this paper is to extend results from [A. Cañada, J. A. Montero and S. Villegas, Lyapunov inequalities for partial differential equations, J. Funct. Anal. 237 (2006), 1, 176–193] about Lyapunov-type inequalities for linear partial differential equations to nonlinear partial differential equations with 𝑝-Laplacian with zero Neumann or Dirichlet boundary conditions.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 613-618
Author(s):  
Şamil Akçağıl

AbstractSolving nonlinear evolution equations is an important issue in the mathematical and physical sciences. Therefore, traditional methods, such as the method of characteristics, are used to solve nonlinear partial differential equations. A general method for determining analytical solutions for partial differential equations has not been found among traditional methods. Due to the development of symbolic computational techniques many alternative methods, such as hyperbolic tangent function methods, have been introduced in the last 50 years. Although all of them were introduced as a new method, some of them are similar to each other. In this study, we examine the following four important methods intensively used in the literature: the tanh–coth method, the modified Kudryashov method, the F-expansion method and the generalized Riccati equation mapping method. The similarities of these methods attracted our attention, and we give a link between the methods and a system of projective Riccati equations. It is possible to derive new solution methods for nonlinear evolution equations by using this connection.


Open Physics ◽  
2020 ◽  
Vol 18 (1) ◽  
pp. 545-554
Author(s):  
Asghar Ali ◽  
Aly R. Seadawy ◽  
Dumitru Baleanu

AbstractThis article scrutinizes the efficacy of analytical mathematical schemes, improved simple equation and exp(-\text{Ψ}(\xi ))-expansion techniques for solving the well-known nonlinear partial differential equations. A longitudinal wave model is used for the description of the dispersion in the circular rod grounded via transverse Poisson’s effect; similarly, the Boussinesq equation is used for extensive wave propagation on the surface of water. Many other such types of equations are also solved with these techniques. Hence, our methods appear easier and faster via symbolic computation.


Sign in / Sign up

Export Citation Format

Share Document